Molecular characterization and genome sequencing of selected highly resistant clinical isolates of Pseudomonas aeruginosa and its association with the clustered regularly interspaced palindromic repeat/Cas system.

IF 3.4 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Heliyon Pub Date : 2025-01-06 eCollection Date: 2025-01-15 DOI:10.1016/j.heliyon.2025.e41670
Hekmat A Owaid, Mushtak T S Al-Ouqaili
{"title":"Molecular characterization and genome sequencing of selected highly resistant clinical isolates of <i>Pseudomonas aeruginosa</i> and its association with the clustered regularly interspaced palindromic repeat/Cas system.","authors":"Hekmat A Owaid, Mushtak T S Al-Ouqaili","doi":"10.1016/j.heliyon.2025.e41670","DOIUrl":null,"url":null,"abstract":"<p><p>The presence of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system in the superbug <i>Pseudomonas (P) aeruginosa</i> presents a unique opportunity to precisely target and edit bacterial genomes to modify their drug resistance. The objective was to detect the prevalence of CRISPR in extensively and pan-drug-resistant <i>Pseudomonas aeruginosa</i> and to determine the utility of whole-genome sequencing (WGS) for the analysis of the entire genome for such strains. The antimicrobial susceptibilities of one hundred isolates were assessed using the antibiotic susceptibility test (AST) card of the VITEK system. The presence of the CRISPR/Cas system was determined via specific primers using conventional polymerase chain reaction (PCR). Further, WGS was conducted using a DNA nanoball sequencing platform via BGI-Tech for the isolates of interest. Out of 54 resistant <i>Pseudomonas aeruginosa</i> isolates<i>,</i> 33 (33.0 %) were metallo-β-lactamase producers. Cas1, Cas3, CRISPR1, and CRISPR2 were positive in 6.0 % of isolates, while incomplete CRISPR1-Cas systems alone were found in 15.0 %. Also, CRISPR2-type was found intact in 26 % of isolates. The prevalence of resistance to antimicrobials in <i>P. aeruginosa</i> isolates was significantly greater in the CRISPR/Cas-negative group compared to the CRISPR/Cas-positive. Significant relationships for variables were examined using Fisher's exact tests using Chi-squared and a P-value of <0.05 as a statistical threshold. Further, on examination of CRs as a collective entity, encompassing both extensive drug resistance (XDR) and pan-drug resistance (PDR), it becomes evident that the vast majority of these strains (n = 29; 87.8 %) lacked CRISPR/Cas systems. In phylogenic analysis, PDR-<i>P. aeruginosa</i> revealed a very close evolutionary relationship with those originating from Kazakhstan, while XDR was globally unique. Further, the entire genome showed the presence of unique virulence and resistant pseudomonal genes. The CRISPR/Cas system and drug resistance are antagonistic to one another. XDR and PDR <i>P. aeruginosa</i> represent a potential threat to public health and contribute to the seriousness of associated illnesses by leading to resistant infections. Further, WGS for the two strains revealed resistance to multiple antibiotics. It is important to examine specific antimicrobial resistance (AMR) pathways, which suggests that a significant number of resistant genes in these isolates indicate a loss of CRISPR genes in the two strains. Furthermore, the WGS approach can lead to a better understanding of the genomic mechanism of pseudomonal resistance to antibiotics.</p>","PeriodicalId":12894,"journal":{"name":"Heliyon","volume":"11 1","pages":"e41670"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761341/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heliyon","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.heliyon.2025.e41670","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/15 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The presence of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system in the superbug Pseudomonas (P) aeruginosa presents a unique opportunity to precisely target and edit bacterial genomes to modify their drug resistance. The objective was to detect the prevalence of CRISPR in extensively and pan-drug-resistant Pseudomonas aeruginosa and to determine the utility of whole-genome sequencing (WGS) for the analysis of the entire genome for such strains. The antimicrobial susceptibilities of one hundred isolates were assessed using the antibiotic susceptibility test (AST) card of the VITEK system. The presence of the CRISPR/Cas system was determined via specific primers using conventional polymerase chain reaction (PCR). Further, WGS was conducted using a DNA nanoball sequencing platform via BGI-Tech for the isolates of interest. Out of 54 resistant Pseudomonas aeruginosa isolates, 33 (33.0 %) were metallo-β-lactamase producers. Cas1, Cas3, CRISPR1, and CRISPR2 were positive in 6.0 % of isolates, while incomplete CRISPR1-Cas systems alone were found in 15.0 %. Also, CRISPR2-type was found intact in 26 % of isolates. The prevalence of resistance to antimicrobials in P. aeruginosa isolates was significantly greater in the CRISPR/Cas-negative group compared to the CRISPR/Cas-positive. Significant relationships for variables were examined using Fisher's exact tests using Chi-squared and a P-value of <0.05 as a statistical threshold. Further, on examination of CRs as a collective entity, encompassing both extensive drug resistance (XDR) and pan-drug resistance (PDR), it becomes evident that the vast majority of these strains (n = 29; 87.8 %) lacked CRISPR/Cas systems. In phylogenic analysis, PDR-P. aeruginosa revealed a very close evolutionary relationship with those originating from Kazakhstan, while XDR was globally unique. Further, the entire genome showed the presence of unique virulence and resistant pseudomonal genes. The CRISPR/Cas system and drug resistance are antagonistic to one another. XDR and PDR P. aeruginosa represent a potential threat to public health and contribute to the seriousness of associated illnesses by leading to resistant infections. Further, WGS for the two strains revealed resistance to multiple antibiotics. It is important to examine specific antimicrobial resistance (AMR) pathways, which suggests that a significant number of resistant genes in these isolates indicate a loss of CRISPR genes in the two strains. Furthermore, the WGS approach can lead to a better understanding of the genomic mechanism of pseudomonal resistance to antibiotics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铜绿假单胞菌高耐药性临床分离株的分子特征和基因组测序及其与聚类规律性间隔 palindromic repeat/Cas 系统的关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Heliyon
Heliyon MULTIDISCIPLINARY SCIENCES-
CiteScore
4.50
自引率
2.50%
发文量
2793
期刊介绍: Heliyon is an all-science, open access journal that is part of the Cell Press family. Any paper reporting scientifically accurate and valuable research, which adheres to accepted ethical and scientific publishing standards, will be considered for publication. Our growing team of dedicated section editors, along with our in-house team, handle your paper and manage the publication process end-to-end, giving your research the editorial support it deserves.
期刊最新文献
Community-based model for management and follow-up by non-physician healthcare workers to improve awareness, treatment, and control of hypertension: The COTRACO study protocol. Identification of microorganisms at different times in a bioleaching process for the recovery of gold and silver from minerals in oxide form. On-farm diversity and production challenges in Ethiopian tef [Eragrostis tef ((Zuccagni) Trotter)] landraces from Arsi zone, Ethiopia: Implications for breeding and conservation. Spondias purpurea L. (Anacardiaceae) fruits flours at different maturation stages: Drying kinetics, mathematical modelling, characterization and correlation analysis. Blood levels of cytokines highlight the role of inflammation in Alzheimer's disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1