Shear wave elastography reveals passive and active mechanics of triceps surae muscles in vivo: from shear modulus-ankle angle to stress-strain characteristics.
{"title":"Shear wave elastography reveals passive and active mechanics of triceps surae muscles in vivo: from shear modulus-ankle angle to stress-strain characteristics.","authors":"Manuela Zimmer, Louis Fabian Straub, Filiz Ateş","doi":"10.1152/japplphysiol.00459.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Characterizing individual muscle behavior is crucial for understanding joint function and adaptations to exercise, diseases, or aging. Shear wave elastography (SWE) is a promising tool for measuring the intrinsic material properties of muscle. This study assessed the passive and active shear modulus of the triceps surae muscles in 14 volunteers (7 females, 25.9 ± 2.5 yr) using SWE. Ankle moment, surface electromyography, and SWE of the gastrocnemius medialis (GM), gastrocnemius lateralis (GL), and soleus (SOL) muscles were measured from 30° plantar flexion (PF) to 15° dorsiflexion (DF) ankle angles during passive and isometric contractions at 25%, 50%, and 75% of maximum voluntary contraction (MVC). Muscle length, passive and active ankle moment, and passive shear modulus increased from PF to DF (<i>P</i> < 0.001 for all). At 15° DF, the passive shear modulus of the SOL was 76% lower than that of the GM (<i>P</i> < 0.001), suggesting that the SOL operates within a lower strain range. The active shear modulus decreased from PF to DF (e.g., by 36.8% at 75% MVC, <i>P</i> = 0.009) and was lowest in SOL. The decreasing active shear modulus suggests that the muscles operate at shorter-than-optimal to optimal lengths. Contraction intensity also affected the shear modulus (<i>P</i> < 0.001), indicating distinct force-sharing strategies, with GL possibly playing a crucial role at higher-intensity contractions and longer lengths. This study demonstrated SWE's potential to characterize muscle mechanics in vivo. If validated, predictions from SWE could facilitate studying muscle behavior and force-sharing strategies, serving as a diagnostic or monitoring tool for muscle function and performance.<b>NEW & NOTEWORTHY</b> This study assessed the length- and activation-dependent shear moduli of the triceps surae muscles using shear wave elastography. By combining joint moment, muscle fascicle geometry, and electromyography data, we characterize the muscles' in vivo passive and active mechanical behaviors. Our results indicate that the muscles operate at shorter-than-optimal to optimal lengths with soleus force production being least impacted by joint position. We observed muscle-specific shear modulus characteristics, providing insights into stress-strain behavior and force-sharing strategies.</p>","PeriodicalId":15160,"journal":{"name":"Journal of applied physiology","volume":" ","pages":"577-591"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/japplphysiol.00459.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Characterizing individual muscle behavior is crucial for understanding joint function and adaptations to exercise, diseases, or aging. Shear wave elastography (SWE) is a promising tool for measuring the intrinsic material properties of muscle. This study assessed the passive and active shear modulus of the triceps surae muscles in 14 volunteers (7 females, 25.9 ± 2.5 yr) using SWE. Ankle moment, surface electromyography, and SWE of the gastrocnemius medialis (GM), gastrocnemius lateralis (GL), and soleus (SOL) muscles were measured from 30° plantar flexion (PF) to 15° dorsiflexion (DF) ankle angles during passive and isometric contractions at 25%, 50%, and 75% of maximum voluntary contraction (MVC). Muscle length, passive and active ankle moment, and passive shear modulus increased from PF to DF (P < 0.001 for all). At 15° DF, the passive shear modulus of the SOL was 76% lower than that of the GM (P < 0.001), suggesting that the SOL operates within a lower strain range. The active shear modulus decreased from PF to DF (e.g., by 36.8% at 75% MVC, P = 0.009) and was lowest in SOL. The decreasing active shear modulus suggests that the muscles operate at shorter-than-optimal to optimal lengths. Contraction intensity also affected the shear modulus (P < 0.001), indicating distinct force-sharing strategies, with GL possibly playing a crucial role at higher-intensity contractions and longer lengths. This study demonstrated SWE's potential to characterize muscle mechanics in vivo. If validated, predictions from SWE could facilitate studying muscle behavior and force-sharing strategies, serving as a diagnostic or monitoring tool for muscle function and performance.NEW & NOTEWORTHY This study assessed the length- and activation-dependent shear moduli of the triceps surae muscles using shear wave elastography. By combining joint moment, muscle fascicle geometry, and electromyography data, we characterize the muscles' in vivo passive and active mechanical behaviors. Our results indicate that the muscles operate at shorter-than-optimal to optimal lengths with soleus force production being least impacted by joint position. We observed muscle-specific shear modulus characteristics, providing insights into stress-strain behavior and force-sharing strategies.
期刊介绍:
The Journal of Applied Physiology publishes the highest quality original research and reviews that examine novel adaptive and integrative physiological mechanisms in humans and animals that advance the field. The journal encourages the submission of manuscripts that examine the acute and adaptive responses of various organs, tissues, cells and/or molecular pathways to environmental, physiological and/or pathophysiological stressors. As an applied physiology journal, topics of interest are not limited to a particular organ system. The journal, therefore, considers a wide array of integrative and translational research topics examining the mechanisms involved in disease processes and mitigation strategies, as well as the promotion of health and well-being throughout the lifespan. Priority is given to manuscripts that provide mechanistic insight deemed to exert an impact on the field.