A Machine Learning Model for Predicting Prognosis in HCC Patients With Diabetes After TACE.

IF 4.2 3区 医学 Q2 ONCOLOGY Journal of Hepatocellular Carcinoma Pub Date : 2025-01-21 eCollection Date: 2025-01-01 DOI:10.2147/JHC.S496481
Linxia Wu, Lei Chen, Lijie Zhang, Yiming Liu, Die Ouyang, Wenlong Wu, Yu Lei, Ping Han, Huangxuan Zhao, Chuansheng Zheng
{"title":"A Machine Learning Model for Predicting Prognosis in HCC Patients With Diabetes After TACE.","authors":"Linxia Wu, Lei Chen, Lijie Zhang, Yiming Liu, Die Ouyang, Wenlong Wu, Yu Lei, Ping Han, Huangxuan Zhao, Chuansheng Zheng","doi":"10.2147/JHC.S496481","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Type II diabetes mellitus (T2DM) has been found to increase the mortality of patients with hepatocellular carcinoma (HCC). Therefore, this study aimed to establish and validate a machine learning-based explainable prediction model of prognosis in patients with HCC and T2DM undergoing transarterial chemoembolization (TACE).</p><p><strong>Patients and methods: </strong>The prediction model was developed using data from the derivation cohort comprising patients from three medical centers, followed by external validation utilizing patient data extracted from another center. Further, five predictive models were employed to establish prognosis models for 1-, 2-, and 3-year survival, respectively. Prediction performance was assessed by the receiver operating characteristic (ROC), calibration, and decision curve analysis curves. Lastly, the SHapley Additive exPlanations (SHAP) method was used to interpret the final ML model.</p><p><strong>Results: </strong>A total of 636 patients were included. Thirteen variables were selected for the model development. The final random survival forest (RSF) model exhibited excellent performance in the internal validation cohort, with areas under the ROC curve (AUCs) of 0.824, 0.853, and 0.810 in the 1-, 2-, and 3-year survival groups, respectively. This model also demonstrated remarkable discrimination in the external validation cohort, achieving AUCs of 0.862, 0.815, and 0.798 in the 1-, 2-, and 3-year survival groups, respectively. SHAP summary plots were also created to interpret the RSF model.</p><p><strong>Conclusion: </strong>An RSF model with good predictive performance was developed by incorporating simple parameters. This prognostic prediction model may assist physicians in early clinical intervention and improve prognosis outcomes in patients with HCC and comorbid T2DM after TACE.</p>","PeriodicalId":15906,"journal":{"name":"Journal of Hepatocellular Carcinoma","volume":"12 ","pages":"77-91"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762020/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hepatocellular Carcinoma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JHC.S496481","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Type II diabetes mellitus (T2DM) has been found to increase the mortality of patients with hepatocellular carcinoma (HCC). Therefore, this study aimed to establish and validate a machine learning-based explainable prediction model of prognosis in patients with HCC and T2DM undergoing transarterial chemoembolization (TACE).

Patients and methods: The prediction model was developed using data from the derivation cohort comprising patients from three medical centers, followed by external validation utilizing patient data extracted from another center. Further, five predictive models were employed to establish prognosis models for 1-, 2-, and 3-year survival, respectively. Prediction performance was assessed by the receiver operating characteristic (ROC), calibration, and decision curve analysis curves. Lastly, the SHapley Additive exPlanations (SHAP) method was used to interpret the final ML model.

Results: A total of 636 patients were included. Thirteen variables were selected for the model development. The final random survival forest (RSF) model exhibited excellent performance in the internal validation cohort, with areas under the ROC curve (AUCs) of 0.824, 0.853, and 0.810 in the 1-, 2-, and 3-year survival groups, respectively. This model also demonstrated remarkable discrimination in the external validation cohort, achieving AUCs of 0.862, 0.815, and 0.798 in the 1-, 2-, and 3-year survival groups, respectively. SHAP summary plots were also created to interpret the RSF model.

Conclusion: An RSF model with good predictive performance was developed by incorporating simple parameters. This prognostic prediction model may assist physicians in early clinical intervention and improve prognosis outcomes in patients with HCC and comorbid T2DM after TACE.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.50
自引率
2.40%
发文量
108
审稿时长
16 weeks
期刊最新文献
Impact of Timing the Combination of Radiotherapy and PD-1 Inhibitors on Outcomes in Patients with Hepatocellular Carcinoma. A Machine Learning Model for Predicting Prognosis in HCC Patients With Diabetes After TACE. A New Risk Score Based on Lipid Indicators for Patients with Advanced Hepatocellular Carcinoma. Risk and Prognosis of Hepatocellular Carcinoma in Mexican Americans with Type 2 Diabetes Mellitus. Progress in the Study of Intratumoral Microorganisms in Hepatocellular Carcinoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1