Bingxin Liu, Yamato Sajiki, Nicole Littlefield, Yongan Hu, William D Stuart, Anusha Sridharan, Xuemei Cui, Matthew E Siefert, Koichi Araki, Assem G Ziady, Donglu Shi, Jeffery A Whitsett, Yutaka Maeda
{"title":"PBAE-PEG-based lipid nanoparticles for lung cell-specific gene delivery.","authors":"Bingxin Liu, Yamato Sajiki, Nicole Littlefield, Yongan Hu, William D Stuart, Anusha Sridharan, Xuemei Cui, Matthew E Siefert, Koichi Araki, Assem G Ziady, Donglu Shi, Jeffery A Whitsett, Yutaka Maeda","doi":"10.1016/j.ymthe.2025.01.037","DOIUrl":null,"url":null,"abstract":"<p><p>Exemplified by successful use in COVID-19 vaccination, delivery of modified mRNA encapsulated in lipid nanoparticles (LNPs) provides a framework for treating various genetic and acquired disorders. However, LNPs that can deliver mRNA into specific lung cell types have not yet been established. Here, we sought to determine whether poly(β-amino ester)s (PBAE) or PEGylated PBAE (PBAE-PEG) in combination with 4A3-SC8/DOPE/cholesterol/DOTAP LNPs could deliver mRNA into different types of lung cells in vivo. PBAE-PEG/LNP was similar to Lipofectamine MessengerMAX followed by PBAE/LNP for mRNA transfection efficiency in HEK293T cells in vitro. PBAE-PEG/LNP administered by intravenous (IV) injection achieved 73% mRNA transfection efficiency into lung endothelial cells, while PBAE-PEG/LNP administered by intratracheal (IT) injection achieved 55% efficiency in lung alveolar type II (ATII) epithelial cells in mice in vivo. PBAE/LNP administered by IT injection were superior for specific delivery into lung airway club epithelial cells compared to PBAE-PEG/LNP. Lipofectamine MessengerMAX was inactive in vivo. 5-Methoxyuridine-modified mRNA was more efficient than unmodified mRNA in vivo but not in vitro. Our findings indicate that PBAE-PEG/LNP and PBAE/LNP can transfect multiple lung cell types in vivo, which can be applied in gene therapy targeting genetic lung diseases.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":"1154-1165"},"PeriodicalIF":12.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897763/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2025.01.037","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Exemplified by successful use in COVID-19 vaccination, delivery of modified mRNA encapsulated in lipid nanoparticles (LNPs) provides a framework for treating various genetic and acquired disorders. However, LNPs that can deliver mRNA into specific lung cell types have not yet been established. Here, we sought to determine whether poly(β-amino ester)s (PBAE) or PEGylated PBAE (PBAE-PEG) in combination with 4A3-SC8/DOPE/cholesterol/DOTAP LNPs could deliver mRNA into different types of lung cells in vivo. PBAE-PEG/LNP was similar to Lipofectamine MessengerMAX followed by PBAE/LNP for mRNA transfection efficiency in HEK293T cells in vitro. PBAE-PEG/LNP administered by intravenous (IV) injection achieved 73% mRNA transfection efficiency into lung endothelial cells, while PBAE-PEG/LNP administered by intratracheal (IT) injection achieved 55% efficiency in lung alveolar type II (ATII) epithelial cells in mice in vivo. PBAE/LNP administered by IT injection were superior for specific delivery into lung airway club epithelial cells compared to PBAE-PEG/LNP. Lipofectamine MessengerMAX was inactive in vivo. 5-Methoxyuridine-modified mRNA was more efficient than unmodified mRNA in vivo but not in vitro. Our findings indicate that PBAE-PEG/LNP and PBAE/LNP can transfect multiple lung cell types in vivo, which can be applied in gene therapy targeting genetic lung diseases.
Anita Kothari, Ian D Graham, Madeline Dougherty, Roberta de Carvalho Corôa, Diogo G V Mochcovitch, Christine Cassidy, Amy Etherington, Marie-Gloriose Ingabire, Lesley Gittings, Amede Gogovor, France Légaré, Elsa-Lynn Nassar, Oluwabambi Tinuoye, Heinrich Cyril Volmink, Robert K D McLean
期刊介绍:
Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.