Kandace R Griffin, Christopher M Holbrook, Daniel P Zielinski, Christopher L Cahill, C Michael Wagner
{"title":"Not all who meander are lost: migrating sea lamprey follow river thalwegs to facilitate safe and efficient passage upstream.","authors":"Kandace R Griffin, Christopher M Holbrook, Daniel P Zielinski, Christopher L Cahill, C Michael Wagner","doi":"10.1242/jeb.249539","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient navigation is crucial for the reproductive success of many migratory species, often driven by competing pressures to conserve energy and reduce predation risk. Little is known about how non-homing species achieve this balance. We show that sea lamprey (Petromyzon marinus), an ancient extant vertebrate, uses persistent patterns in hydro-geomorphology to quickly and efficiently navigate through complex ecosystems. Hydrodynamic flow models coupled with bathymetric mapping and fine scale acoustic telemetry revealed movement paths that tracked thalweg scour channels promoting rapid and efficient upstream migration, suggesting the existence of a bathymetric highway system. Near-substrate swimming along this path resulted in a median of 5.8% energy savings while also promoting improved safety from nocturnally active predators. We hypothesize sea lampreys use a novel mechanism, hydrostatic pressure guided rheotaxis, to achieve this navigation. It is likely this tactic relies on sensory information from the animal's primitive lateral line and perhaps the inner ear. Insights from this study can be used to redesign conservation practices to achieve improved control where the animal is invasive and improved fish passage within its native range.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.249539","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient navigation is crucial for the reproductive success of many migratory species, often driven by competing pressures to conserve energy and reduce predation risk. Little is known about how non-homing species achieve this balance. We show that sea lamprey (Petromyzon marinus), an ancient extant vertebrate, uses persistent patterns in hydro-geomorphology to quickly and efficiently navigate through complex ecosystems. Hydrodynamic flow models coupled with bathymetric mapping and fine scale acoustic telemetry revealed movement paths that tracked thalweg scour channels promoting rapid and efficient upstream migration, suggesting the existence of a bathymetric highway system. Near-substrate swimming along this path resulted in a median of 5.8% energy savings while also promoting improved safety from nocturnally active predators. We hypothesize sea lampreys use a novel mechanism, hydrostatic pressure guided rheotaxis, to achieve this navigation. It is likely this tactic relies on sensory information from the animal's primitive lateral line and perhaps the inner ear. Insights from this study can be used to redesign conservation practices to achieve improved control where the animal is invasive and improved fish passage within its native range.
期刊介绍:
Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.