Advances in understanding the role of squalene epoxidase in cancer prognosis and resistance.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Biology Reports Pub Date : 2025-01-27 DOI:10.1007/s11033-025-10276-x
Jiazhuang Zhu, Yongjie Wang, Kunpeng Zhu, Chunlin Zhang
{"title":"Advances in understanding the role of squalene epoxidase in cancer prognosis and resistance.","authors":"Jiazhuang Zhu, Yongjie Wang, Kunpeng Zhu, Chunlin Zhang","doi":"10.1007/s11033-025-10276-x","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, there has been burgeoning interest in the involvement of cholesterol metabolism in cancer. Squalene epoxidase (SQLE), as a critical rate-limiting enzyme in the cholesterol synthesis pathway, has garnered attention due to its overexpression in various cancer types, thereby significantly impacting tumor prognosis and resistance mechanisms. Firstly, SQLE contributes to unfavorable prognosis through diverse mechanisms, encompassing modulation of the PI3K/AKT signaling pathway, manipulation of the cancer microenvironment, and participation in ferroptosis. Secondly, directing efforts towards targeting SQLE, via mechanisms such as the PI3K/AKT pathway, presents promising avenues for overcoming resistance to conventional therapies such as endocrine cancer therapy, chemotherapy, immunotherapy, or radiotherapy. Moreover, the effectiveness of SQLE protein inhibitors in impeding cancer progression may either depend directly on SQLE inhibition or function through alternative pathways separate from SQLE. This mini-review offers insights into the intricate mechanisms through which SQLE affects the prognosis and resistance profiles across diverse cancer types, while succinctly elucidating the mechanisms underpinning the anticancer effects of SQLE protein inhibitors. Furthermore, this mini-review underscores the necessity for further investigations into the interplay between SQLE and cancer, proposing potential avenues for future research, with the aim of serving as a reference for exploring the mechanisms governing the role of SQLE in cancer regulation.</p>","PeriodicalId":18755,"journal":{"name":"Molecular Biology Reports","volume":"52 1","pages":"162"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11033-025-10276-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, there has been burgeoning interest in the involvement of cholesterol metabolism in cancer. Squalene epoxidase (SQLE), as a critical rate-limiting enzyme in the cholesterol synthesis pathway, has garnered attention due to its overexpression in various cancer types, thereby significantly impacting tumor prognosis and resistance mechanisms. Firstly, SQLE contributes to unfavorable prognosis through diverse mechanisms, encompassing modulation of the PI3K/AKT signaling pathway, manipulation of the cancer microenvironment, and participation in ferroptosis. Secondly, directing efforts towards targeting SQLE, via mechanisms such as the PI3K/AKT pathway, presents promising avenues for overcoming resistance to conventional therapies such as endocrine cancer therapy, chemotherapy, immunotherapy, or radiotherapy. Moreover, the effectiveness of SQLE protein inhibitors in impeding cancer progression may either depend directly on SQLE inhibition or function through alternative pathways separate from SQLE. This mini-review offers insights into the intricate mechanisms through which SQLE affects the prognosis and resistance profiles across diverse cancer types, while succinctly elucidating the mechanisms underpinning the anticancer effects of SQLE protein inhibitors. Furthermore, this mini-review underscores the necessity for further investigations into the interplay between SQLE and cancer, proposing potential avenues for future research, with the aim of serving as a reference for exploring the mechanisms governing the role of SQLE in cancer regulation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
进一步了解角鲨烯环氧化物酶在癌症预后和抗药性中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Biology Reports
Molecular Biology Reports 生物-生化与分子生物学
CiteScore
5.00
自引率
0.00%
发文量
1048
审稿时长
5.6 months
期刊介绍: Molecular Biology Reports publishes original research papers and review articles that demonstrate novel molecular and cellular findings in both eukaryotes (animals, plants, algae, funghi) and prokaryotes (bacteria and archaea).The journal publishes results of both fundamental and translational research as well as new techniques that advance experimental progress in the field and presents original research papers, short communications and (mini-) reviews.
期刊最新文献
Tracking genetic diversity in amur tigers: a long-term study using microsatellites in Southwest Primorye, Russia. XadA-like adhesin XADA2 regulates biofilm formation in X. fastidiosa subsp. fastidiosa putatively by engaging oleic-acid derived oxylipins. Correction: Decellularized skin pretreatment by monophosphoryl lipid A and lactobacillus casei supernatant accelerate skin recellularization. ChIP provides 10-fold microbial DNA enrichment from tissue while minimizing bias. Current trends in application of CRISPR/Cas9 in gene editing and diagnostics in Neglected tropical diseases (NTDs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1