Rahul Kumar , Ethan Waisberg , Joshua Ong , Karsten Chima , Dylan Amiri , Alireza Tavakkoli
{"title":"Optimizing autonomous artificial intelligence diagnostics for neuro-ocular health in space missions","authors":"Rahul Kumar , Ethan Waisberg , Joshua Ong , Karsten Chima , Dylan Amiri , Alireza Tavakkoli","doi":"10.1016/j.lssr.2024.12.004","DOIUrl":null,"url":null,"abstract":"<div><div>Spaceflight-Associated Neuro-Ocular Syndrome (SANS) presents a critical risk in long-duration missions, with microgravity-induced changes that threaten astronaut vision and mission outcomes. Current SANS monitoring, limited to pre- and post-flight exams, lacks in-flight diagnostics, highlighting an urgent need for autonomous tools capable of real-time assessment. Grok, an AI platform by xAI, offers promising potential as an advanced diagnostic tool for space-based health monitoring. Originally developed for broader applications, Grok's high-resolution imaging capabilities could be adapted to detect early SANS indicators such as optic nerve edema and shifts in globe morphology, changes linked to fluid redistribution in space. However, realizing this vision requires algorithmic and hardware adjustments to address the unique physiological shifts astronauts experience. By advancing Grok's diagnostic capability, we strongly believe astronauts could manage SANS autonomously, bringing much-needed real-time, high-accuracy diagnostics to isolated, high-stakes environments—essential as humanity embarks on increasingly ambitious missions to Mars and beyond</div></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"44 ","pages":"Pages 64-66"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Sciences in Space Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214552424001184","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Spaceflight-Associated Neuro-Ocular Syndrome (SANS) presents a critical risk in long-duration missions, with microgravity-induced changes that threaten astronaut vision and mission outcomes. Current SANS monitoring, limited to pre- and post-flight exams, lacks in-flight diagnostics, highlighting an urgent need for autonomous tools capable of real-time assessment. Grok, an AI platform by xAI, offers promising potential as an advanced diagnostic tool for space-based health monitoring. Originally developed for broader applications, Grok's high-resolution imaging capabilities could be adapted to detect early SANS indicators such as optic nerve edema and shifts in globe morphology, changes linked to fluid redistribution in space. However, realizing this vision requires algorithmic and hardware adjustments to address the unique physiological shifts astronauts experience. By advancing Grok's diagnostic capability, we strongly believe astronauts could manage SANS autonomously, bringing much-needed real-time, high-accuracy diagnostics to isolated, high-stakes environments—essential as humanity embarks on increasingly ambitious missions to Mars and beyond
期刊介绍:
Life Sciences in Space Research publishes high quality original research and review articles in areas previously covered by the Life Sciences section of COSPAR''s other society journal Advances in Space Research.
Life Sciences in Space Research features an editorial team of top scientists in the space radiation field and guarantees a fast turnaround time from submission to editorial decision.