Sex-specific effects on the heart from combined exposure to simulated galactic cosmic radiation and hindlimb unloading

IF 2.9 3区 生物学 Q2 ASTRONOMY & ASTROPHYSICS Life Sciences in Space Research Pub Date : 2025-02-01 DOI:10.1016/j.lssr.2024.12.001
A.S. Nemec-Bakk , V. Sridharan , J.S. Willey , I. Koturbash , D.K. Williams , M. Chesal , C.M. Patel , A.M. Borg , K. Reno , G. Gifford , W. Newhauser , J. Williams , J.C. Chancellor , M. Boerma
{"title":"Sex-specific effects on the heart from combined exposure to simulated galactic cosmic radiation and hindlimb unloading","authors":"A.S. Nemec-Bakk ,&nbsp;V. Sridharan ,&nbsp;J.S. Willey ,&nbsp;I. Koturbash ,&nbsp;D.K. Williams ,&nbsp;M. Chesal ,&nbsp;C.M. Patel ,&nbsp;A.M. Borg ,&nbsp;K. Reno ,&nbsp;G. Gifford ,&nbsp;W. Newhauser ,&nbsp;J. Williams ,&nbsp;J.C. Chancellor ,&nbsp;M. Boerma","doi":"10.1016/j.lssr.2024.12.001","DOIUrl":null,"url":null,"abstract":"<div><div>Future long duration space missions will expose astronauts to higher doses of galactic cosmic radiation (GCR) than those experienced on the international space station. Recent studies have demonstrated astronauts may be at risk for cardiovascular complications due to increased radiation exposure and fluid shift from microgravity. However, there is a lack of direct evidence on how the cardiovascular system is affected by GCR and microgravity since no astronauts have been exposed to exploratory mission relevant GCR doses. Therefore, we utilized a ground-based mouse model to determine the cardiovascular risks for space radiation exposure while the mice were simultaneously hindlimb suspended to mimic microgravity. 6-month-old male and female C57BL/6 mice were exposed to an absorbed dose of 0 Gy, 0.5 Gy, or 1.5 Gy simulated GCR (GCRsim) that comprised beams of 5 ions at NASA's Space Radiation Laboratory. Subcohorts of mice were hindlimb unloaded (HLU), starting 5 days before GCRsim until the completion of radiation exposure. GCRsim + HLU was performed over 8 hours (0.5 Gy) or 24 hours (1.5 Gy). After completion of GCRsim and HLU, mice were shipped to UAMS for long-term observation. Cardiac function was measured using high resolution ultrasound at 6 and 9 months after exposure. Tissues were collected after the final ultrasound and prepared for further analysis. Female mice exposed to 1.5 Gy + HLU demonstrated a significant increase in body weight compared to ground controls months after GCR exposure; however, there was no change in male body weights. Cardiac ultrasound revealed 0.5 Gy GCRsim decreased left ventricular (LV) mass, LV posterior wall thickness in diastole, and systole in males 6 months after exposure. In females, 1.5 Gy + HLU significantly increased LV posterior wall thickness in diastole and systole at 6 months. These changes in ultrasound measurements were no longer seen at 9 months. Moreover, at 9 months there was no change in total collagen content or density of the capillary network in the heart. Lastly, the combination of GCRsim and HLU influenced immune cell markers in the heart of female mice. These data suggest that combined simulated GCR and microgravity result in minor, yet statistically significant sex-dependent changes to body weight and cardiac structure.</div></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"44 ","pages":"Pages 38-46"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Sciences in Space Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214552424001159","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Future long duration space missions will expose astronauts to higher doses of galactic cosmic radiation (GCR) than those experienced on the international space station. Recent studies have demonstrated astronauts may be at risk for cardiovascular complications due to increased radiation exposure and fluid shift from microgravity. However, there is a lack of direct evidence on how the cardiovascular system is affected by GCR and microgravity since no astronauts have been exposed to exploratory mission relevant GCR doses. Therefore, we utilized a ground-based mouse model to determine the cardiovascular risks for space radiation exposure while the mice were simultaneously hindlimb suspended to mimic microgravity. 6-month-old male and female C57BL/6 mice were exposed to an absorbed dose of 0 Gy, 0.5 Gy, or 1.5 Gy simulated GCR (GCRsim) that comprised beams of 5 ions at NASA's Space Radiation Laboratory. Subcohorts of mice were hindlimb unloaded (HLU), starting 5 days before GCRsim until the completion of radiation exposure. GCRsim + HLU was performed over 8 hours (0.5 Gy) or 24 hours (1.5 Gy). After completion of GCRsim and HLU, mice were shipped to UAMS for long-term observation. Cardiac function was measured using high resolution ultrasound at 6 and 9 months after exposure. Tissues were collected after the final ultrasound and prepared for further analysis. Female mice exposed to 1.5 Gy + HLU demonstrated a significant increase in body weight compared to ground controls months after GCR exposure; however, there was no change in male body weights. Cardiac ultrasound revealed 0.5 Gy GCRsim decreased left ventricular (LV) mass, LV posterior wall thickness in diastole, and systole in males 6 months after exposure. In females, 1.5 Gy + HLU significantly increased LV posterior wall thickness in diastole and systole at 6 months. These changes in ultrasound measurements were no longer seen at 9 months. Moreover, at 9 months there was no change in total collagen content or density of the capillary network in the heart. Lastly, the combination of GCRsim and HLU influenced immune cell markers in the heart of female mice. These data suggest that combined simulated GCR and microgravity result in minor, yet statistically significant sex-dependent changes to body weight and cardiac structure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Life Sciences in Space Research
Life Sciences in Space Research Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
5.30
自引率
8.00%
发文量
69
期刊介绍: Life Sciences in Space Research publishes high quality original research and review articles in areas previously covered by the Life Sciences section of COSPAR''s other society journal Advances in Space Research. Life Sciences in Space Research features an editorial team of top scientists in the space radiation field and guarantees a fast turnaround time from submission to editorial decision.
期刊最新文献
Lunar dust induces minimal pulmonary toxicity compared to Earth dust Effects of X-ray irradiation and housing conditions on mitochondria in Peromyscus maniculatus IFC - Editorial Board Biofilm dynamics in space and their potential for sustainable space exploration – A comprehensive review Solid waste management and resource recovery during the 4-crew 180-day CELSS integrated experiment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1