The PDC30 Chatbot-Development of a Psychoeducational Resource on Dementia Caregiving Among Family Caregivers: Mixed Methods Acceptability Study.

IF 5 Q1 GERIATRICS & GERONTOLOGY JMIR Aging Pub Date : 2025-01-06 DOI:10.2196/63715
Sheung-Tak Cheng, Peter H F Ng
{"title":"The PDC30 Chatbot-Development of a Psychoeducational Resource on Dementia Caregiving Among Family Caregivers: Mixed Methods Acceptability Study.","authors":"Sheung-Tak Cheng, Peter H F Ng","doi":"10.2196/63715","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Providing ongoing support to the increasing number of caregivers as their needs change in the long-term course of dementia is a severe challenge to any health care system. Conversational artificial intelligence (AI) operating 24/7 may help to tackle this problem.</p><p><strong>Objective: </strong>This study describes the development of a generative AI chatbot-the PDC30 Chatbot-and evaluates its acceptability in a mixed methods study.</p><p><strong>Methods: </strong>The PDC30 Chatbot was developed using the GPT-4o large language model, with a personality agent to constrain its behavior to provide advice on dementia caregiving based on the Positive Dementia Caregiving in 30 Days Guidebook-a laypeople's resource based on a validated training manual for dementia caregivers. The PDC30 Chatbot's responses to 21 common questions were compared with those of ChatGPT and another chatbot (called Chatbot-B) as standards of reference. Chatbot-B was constructed using PDC30 Chatbot's architecture but replaced the latter's knowledge base with a collection of authoritative sources, including the World Health Organization's iSupport, By Us For Us Guides, and 185 web pages or manuals by Alzheimer's Association, National Institute on Aging, and UK Alzheimer's Society. In the next phase, to assess the acceptability of the PDC30 Chatbot, 21 family caregivers used the PDC30 Chatbot for two weeks and provided ratings and comments on its acceptability.</p><p><strong>Results: </strong>Among the three chatbots, ChatGPT's responses tended to be repetitive and not specific enough. PDC30 Chatbot and Chatbot-B, by virtue of their design, produced highly context-sensitive advice, with the former performing slightly better when the questions conveyed significant psychological distress on the part of the caregiver. In the acceptability study, caregivers found the PDC30 Chatbot highly user-friendly, and its responses quite helpful and easy to understand. They were rather satisfied with it and would strongly recommend it to other caregivers. During the 2-week trial period, the majority used the chatbot more than once per day. Thematic analysis of their written feedback revealed three major themes: helpfulness, accessibility, and improved attitude toward AI.</p><p><strong>Conclusions: </strong>The PDC30 Chatbot provides quality responses to caregiver questions, which are well-received by caregivers. Conversational AI is a viable approach to improve the support of caregivers.</p>","PeriodicalId":36245,"journal":{"name":"JMIR Aging","volume":"8 ","pages":"e63715"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758934/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/63715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Providing ongoing support to the increasing number of caregivers as their needs change in the long-term course of dementia is a severe challenge to any health care system. Conversational artificial intelligence (AI) operating 24/7 may help to tackle this problem.

Objective: This study describes the development of a generative AI chatbot-the PDC30 Chatbot-and evaluates its acceptability in a mixed methods study.

Methods: The PDC30 Chatbot was developed using the GPT-4o large language model, with a personality agent to constrain its behavior to provide advice on dementia caregiving based on the Positive Dementia Caregiving in 30 Days Guidebook-a laypeople's resource based on a validated training manual for dementia caregivers. The PDC30 Chatbot's responses to 21 common questions were compared with those of ChatGPT and another chatbot (called Chatbot-B) as standards of reference. Chatbot-B was constructed using PDC30 Chatbot's architecture but replaced the latter's knowledge base with a collection of authoritative sources, including the World Health Organization's iSupport, By Us For Us Guides, and 185 web pages or manuals by Alzheimer's Association, National Institute on Aging, and UK Alzheimer's Society. In the next phase, to assess the acceptability of the PDC30 Chatbot, 21 family caregivers used the PDC30 Chatbot for two weeks and provided ratings and comments on its acceptability.

Results: Among the three chatbots, ChatGPT's responses tended to be repetitive and not specific enough. PDC30 Chatbot and Chatbot-B, by virtue of their design, produced highly context-sensitive advice, with the former performing slightly better when the questions conveyed significant psychological distress on the part of the caregiver. In the acceptability study, caregivers found the PDC30 Chatbot highly user-friendly, and its responses quite helpful and easy to understand. They were rather satisfied with it and would strongly recommend it to other caregivers. During the 2-week trial period, the majority used the chatbot more than once per day. Thematic analysis of their written feedback revealed three major themes: helpfulness, accessibility, and improved attitude toward AI.

Conclusions: The PDC30 Chatbot provides quality responses to caregiver questions, which are well-received by caregivers. Conversational AI is a viable approach to improve the support of caregivers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
JMIR Aging
JMIR Aging Social Sciences-Health (social science)
CiteScore
6.50
自引率
4.10%
发文量
71
审稿时长
12 weeks
期刊最新文献
Best Practices for Implementing Electronic Care Records in Adult Social Care: Rapid Scoping Review. Exploring Older Adults' Perspectives and Acceptance of AI-Driven Health Technologies: Qualitative Study. Feasibility of a Cinematic-Virtual Reality Program Educating Health Professional Students About the Complexity of Geriatric Care: Pilot Pre-Post Study. Uncovering Specific Navigation Patterns by Assessing User Engagement of People With Dementia and Family Caregivers With an Advance Care Planning Website: Quantitative Analysis of Web Log Data. Assessment of Technology Readiness in Norwegian Older Adults With Long-Term Health Conditions Receiving Home Care Services: Cross-Sectional Questionnaire Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1