{"title":"Advanced Machine Learning to Predict Coronary Artery Disease Severity in Patients with Premature Myocardial Infarction.","authors":"Yu-Hang Wang, Chang-Ping Li, Jing-Xian Wang, Zhuang Cui, Yu Zhou, An-Ran Jing, Miao-Miao Liang, Yin Liu, Jing Gao","doi":"10.31083/RCM26102","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Studies using machine learning to identify the target characteristics and develop predictive models for coronary artery disease severity in patients with premature myocardial infarction (PMI) are limited.</p><p><strong>Methods: </strong>In this observational study, 1111 PMI patients (≤55 years) at Tianjin Chest Hospital from 2017 to 2022 were selected and divided according to their SYNTAX scores into a low-risk group (≤22) and medium-high-risk group (>22). These groups were further randomly assigned to a training or test set in a ratio of 7:3. Lasso-logistic was initially used to screen out target factors. Subsequently, Lasso-logistic, random forest (RF), k-nearest neighbor (KNN), support vector machine (SVM), and eXtreme Gradient Boosting (XGBoost) were used to establish prediction models based on the training set. After comparing prediction performance, the best model was chosen to build a prediction system for coronary artery severity in PMI patients.</p><p><strong>Results: </strong>Glycosylated hemoglobin (HbA1c), angina, apolipoprotein B (ApoB), total bile acid (TBA), B-type natriuretic peptide (BNP), D-dimer, and fibrinogen (Fg) were associated with the severity of lesions. In the test set, the area under the curve (AUC) of Lasso-logistic, RF, KNN, SVM, and XGBoost were 0.792, 0.775, 0.739, 0.656, and 0.800, respectively. XGBoost showed the best prediction performance according to the AUC, accuracy, F1 score, and Brier score. In addition, we used decision curve analysis (DCA) to assess the clinical validity of the XGBoost prediction model. Finally, an online calculator based on the XGBoost was established to measure the severity of coronary artery lesions in PMI patients.</p><p><strong>Conclusions: </strong>In summary, we established a novel and convenient prediction system for the severity of lesions in PMI patients. This system can swiftly identify PMI patients who also have severe coronary artery lesions before the coronary intervention, thus offering valuable guidance for clinical decision-making.</p>","PeriodicalId":20989,"journal":{"name":"Reviews in cardiovascular medicine","volume":"26 1","pages":"26102"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760553/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in cardiovascular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.31083/RCM26102","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Studies using machine learning to identify the target characteristics and develop predictive models for coronary artery disease severity in patients with premature myocardial infarction (PMI) are limited.
Methods: In this observational study, 1111 PMI patients (≤55 years) at Tianjin Chest Hospital from 2017 to 2022 were selected and divided according to their SYNTAX scores into a low-risk group (≤22) and medium-high-risk group (>22). These groups were further randomly assigned to a training or test set in a ratio of 7:3. Lasso-logistic was initially used to screen out target factors. Subsequently, Lasso-logistic, random forest (RF), k-nearest neighbor (KNN), support vector machine (SVM), and eXtreme Gradient Boosting (XGBoost) were used to establish prediction models based on the training set. After comparing prediction performance, the best model was chosen to build a prediction system for coronary artery severity in PMI patients.
Results: Glycosylated hemoglobin (HbA1c), angina, apolipoprotein B (ApoB), total bile acid (TBA), B-type natriuretic peptide (BNP), D-dimer, and fibrinogen (Fg) were associated with the severity of lesions. In the test set, the area under the curve (AUC) of Lasso-logistic, RF, KNN, SVM, and XGBoost were 0.792, 0.775, 0.739, 0.656, and 0.800, respectively. XGBoost showed the best prediction performance according to the AUC, accuracy, F1 score, and Brier score. In addition, we used decision curve analysis (DCA) to assess the clinical validity of the XGBoost prediction model. Finally, an online calculator based on the XGBoost was established to measure the severity of coronary artery lesions in PMI patients.
Conclusions: In summary, we established a novel and convenient prediction system for the severity of lesions in PMI patients. This system can swiftly identify PMI patients who also have severe coronary artery lesions before the coronary intervention, thus offering valuable guidance for clinical decision-making.
期刊介绍:
RCM is an international, peer-reviewed, open access journal. RCM publishes research articles, review papers and short communications on cardiovascular medicine as well as research on cardiovascular disease. We aim to provide a forum for publishing papers which explore the pathogenesis and promote the progression of cardiac and vascular diseases. We also seek to establish an interdisciplinary platform, focusing on translational issues, to facilitate the advancement of research, clinical treatment and diagnostic procedures. Heart surgery, cardiovascular imaging, risk factors and various clinical cardiac & vascular research will be considered.