Haresh Bhaskar, Zoe Gidden, Gurvir Virdi, Dirk-Jan Kleinjan, Susan J Rosser, Sonia Gandhi, Lynne Regan, Mathew H Horrocks
{"title":"Super-resolution imaging of proteins inside live mammalian cells with mLIVE-PAINT.","authors":"Haresh Bhaskar, Zoe Gidden, Gurvir Virdi, Dirk-Jan Kleinjan, Susan J Rosser, Sonia Gandhi, Lynne Regan, Mathew H Horrocks","doi":"10.1002/pro.70008","DOIUrl":null,"url":null,"abstract":"<p><p>Super-resolution microscopy has revolutionized biological imaging, enabling the visualization of structures at the nanometer length scale. Its application in live cells, however, has remained challenging. To address this, we adapted LIVE-PAINT, an approach we established in yeast, for application in live mammalian cells. Using the 101A/101B coiled-coil peptide pair as a peptide-based targeting system, we successfully demonstrate the super-resolution imaging of two distinct proteins in mammalian cells, one localized in the nucleus, and the second in the cytoplasm. This study highlights the versatility of LIVE-PAINT, suggesting its potential for live-cell super-resolution imaging across a range of protein targets in mammalian cells. We name the mammalian cell version of our original method mLIVE-PAINT.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 2","pages":"e70008"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761688/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70008","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Super-resolution microscopy has revolutionized biological imaging, enabling the visualization of structures at the nanometer length scale. Its application in live cells, however, has remained challenging. To address this, we adapted LIVE-PAINT, an approach we established in yeast, for application in live mammalian cells. Using the 101A/101B coiled-coil peptide pair as a peptide-based targeting system, we successfully demonstrate the super-resolution imaging of two distinct proteins in mammalian cells, one localized in the nucleus, and the second in the cytoplasm. This study highlights the versatility of LIVE-PAINT, suggesting its potential for live-cell super-resolution imaging across a range of protein targets in mammalian cells. We name the mammalian cell version of our original method mLIVE-PAINT.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).