N Dudysheva, M Luong, A Amadon, L Morel, N Le Touz, A Vignaud, N Boulant, V Gras
{"title":"Proposal for local SAR safety margin in pediatric neuro-imaging using 7 T MRI and parallel transmission.","authors":"N Dudysheva, M Luong, A Amadon, L Morel, N Le Touz, A Vignaud, N Boulant, V Gras","doi":"10.1088/1361-6560/ada683","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Ultra-high field MRI with parallel transmission (pTx) provides a powerful neuroimaging tool with potential application in pediatrics. The use of pTx, however, necessitates a dedicated local specific absorption rate (SAR) management strategy, able to predict and monitor the peak local SAR (pSAR<sub>10g</sub>). In this work, we address the pSAR<sub>10g</sub>assessment for an in-house built 7 T 16Tx32Rx pediatric head coil, using the concept of virtual observation points (VOPs) for SAR estimation.<i>Approach</i>. We base our study on full-wave electromagnetic simulations performed on a database of 64 numerical anatomical head models of children aged between 4 and 16 years. We built VOPs on different subsets of this database of<i>N</i>= 2 up to 30 models, and cross-validated the pSAR<sub>10g</sub>prediction using non-intersecting subsets, each containing 30 models. We thereby propose a minimum anatomical safety factor (ASF) to apply to the VOP set to enforce safety, despite intersubject variability. Our analysis relies on the computation of the worst case SAR to VOP-SAR ratio, independent of the pTx RF excitation.<i>Main results.</i>The interpolation model provides that the minimum ASF decreases as1+5.37⋅N-0.75with<i>N</i>. Using all 64 models to build VOPs leads to an estimated ASF of 1.24 when considering the VOP validity for an infinite number of subjects.<i>Significance.</i>We propose a general simulation workflow to guide ASF estimation and quantify the trade-off between the number of numerical models available for VOP construction and the safety factor. The approach would apply to any simulation dataset and any pTx setup.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":"70 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ada683","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective.Ultra-high field MRI with parallel transmission (pTx) provides a powerful neuroimaging tool with potential application in pediatrics. The use of pTx, however, necessitates a dedicated local specific absorption rate (SAR) management strategy, able to predict and monitor the peak local SAR (pSAR10g). In this work, we address the pSAR10gassessment for an in-house built 7 T 16Tx32Rx pediatric head coil, using the concept of virtual observation points (VOPs) for SAR estimation.Approach. We base our study on full-wave electromagnetic simulations performed on a database of 64 numerical anatomical head models of children aged between 4 and 16 years. We built VOPs on different subsets of this database ofN= 2 up to 30 models, and cross-validated the pSAR10gprediction using non-intersecting subsets, each containing 30 models. We thereby propose a minimum anatomical safety factor (ASF) to apply to the VOP set to enforce safety, despite intersubject variability. Our analysis relies on the computation of the worst case SAR to VOP-SAR ratio, independent of the pTx RF excitation.Main results.The interpolation model provides that the minimum ASF decreases as1+5.37⋅N-0.75withN. Using all 64 models to build VOPs leads to an estimated ASF of 1.24 when considering the VOP validity for an infinite number of subjects.Significance.We propose a general simulation workflow to guide ASF estimation and quantify the trade-off between the number of numerical models available for VOP construction and the safety factor. The approach would apply to any simulation dataset and any pTx setup.
期刊介绍:
The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry