Introduction to Memristive Mechanisms and Models.

IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Recent Patents on Nanotechnology Pub Date : 2025-01-24 DOI:10.2174/0118722105327900250115102034
Davide Cipollini, Lambert Schomaker
{"title":"Introduction to Memristive Mechanisms and Models.","authors":"Davide Cipollini, Lambert Schomaker","doi":"10.2174/0118722105327900250115102034","DOIUrl":null,"url":null,"abstract":"<p><p>The increase in computational power demand led by the development of Artificial Intelligence is rapidly becoming unsustainable. New paradigms of computation, which potentially differ from digital computation, together with novel hardware architecture and devices, are anticipated to reduce the exorbitant energy demand for data-processing tasks. Memristive systems with resistive switching behavior are under intense research, given their prominent role in the fabrication of memory devices that promise the desired hardware revolution in our intensive data-driven era. They are suggested to provide the hardware substrate to scale up computational capabilities while improving their energy expenditure and speed. This work provides an orientation map for those interested in the vast topic of memristive systems with application to neuromorphic computing. We address the description of the most notable emerging devices and we illustrate models that capture the complex dynamical behavior of these systems under the dynamical-systems framework developed by Chua. We then review the memristive behavior under the perspective of statistical physics and percolation theory suited to describe fluctuations and disorder which are otherwise precluded in the dynamical-system approach. Percolation theory allows the investigation of these systems at the mesoscopic level, enabling material-independent modeling of non-linear conductance networks. We finally discuss recent and less recent successes in deep learning methods that bridge the field of physics-based and biological- inspired neuromorphic computing.</p>","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Patents on Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2174/0118722105327900250115102034","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The increase in computational power demand led by the development of Artificial Intelligence is rapidly becoming unsustainable. New paradigms of computation, which potentially differ from digital computation, together with novel hardware architecture and devices, are anticipated to reduce the exorbitant energy demand for data-processing tasks. Memristive systems with resistive switching behavior are under intense research, given their prominent role in the fabrication of memory devices that promise the desired hardware revolution in our intensive data-driven era. They are suggested to provide the hardware substrate to scale up computational capabilities while improving their energy expenditure and speed. This work provides an orientation map for those interested in the vast topic of memristive systems with application to neuromorphic computing. We address the description of the most notable emerging devices and we illustrate models that capture the complex dynamical behavior of these systems under the dynamical-systems framework developed by Chua. We then review the memristive behavior under the perspective of statistical physics and percolation theory suited to describe fluctuations and disorder which are otherwise precluded in the dynamical-system approach. Percolation theory allows the investigation of these systems at the mesoscopic level, enabling material-independent modeling of non-linear conductance networks. We finally discuss recent and less recent successes in deep learning methods that bridge the field of physics-based and biological- inspired neuromorphic computing.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Recent Patents on Nanotechnology
Recent Patents on Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
4.70
自引率
10.00%
发文量
50
审稿时长
3 months
期刊介绍: Recent Patents on Nanotechnology publishes full-length/mini reviews and research articles that reflect or deal with studies in relation to a patent, application of reported patents in a study, discussion of comparison of results regarding application of a given patent, etc., and also guest edited thematic issues on recent patents in the field of nanotechnology. A selection of important and recent patents on nanotechnology is also included in the journal. The journal is essential reading for all researchers involved in nanotechnology.
期刊最新文献
Introduction to Memristive Mechanisms and Models. Fabrication with Characterization of Single-Walled Carbon Nanotube Thin Film Transistor (CNT-TFT) by Spin Coating Method for Flat Panel Display. Development of Stabilized and Aqueous Dissolvable Nanosuspension Encompassing BCS Class IV Drug via Optimization of Process and Formulation Variables. Research on Controllable Synthesis and Growth Mechanism of Sodium Vanadium Fluorophosphate Nanosheets. Progress on One-dimensional Vanadium Pentoxide-based Nanomaterials for Advanced Energy Storage ANSTEEL Research Institute of Vanadium & Titanium (Iron & Steel), China.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1