Case report: co-infection of Scedosporium and Mycobacterium in lungs.

IF 0.7 Q3 MEDICINE, GENERAL & INTERNAL AME Case Reports Pub Date : 2024-10-17 eCollection Date: 2025-01-01 DOI:10.21037/acr-24-9
Chengying Liu, Weiwei Wu, Lan Wang, Jie Li
{"title":"Case report: co-infection of <i>Scedosporium</i> and <i>Mycobacterium</i> in lungs.","authors":"Chengying Liu, Weiwei Wu, Lan Wang, Jie Li","doi":"10.21037/acr-24-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>There are hundreds of pathogens that cause lung infections. Compared to infections caused by a single pathogen, mixed infections account for a larger proportion of pulmonary infections and have a more severe clinical presentation, while treatment options differ between the two. We aimed to explore the advantages of metagenomic next-generation sequencing (mNGS) in the diagnosis and treatment of mixed infections.</p><p><strong>Case description: </strong>To investigate the specific pathogens in a 79-year-old male pneumonia patient who had recurrent cough with poor empirical treatment, we collected bronchoalveolar lavage fluid (BALF) from the patient and performed mNGS technology, along with Sanger sequencing and polymerase chain reaction (PCR) was carried out to confirm the authenticity of the pathogens detected by mNGS. The findings showed that rare pathogen <i>Scedosporium boydii</i> (<i>S. boydii</i>, reads: 18) and <i>Mycobacterium avium</i> complex (MAC, reads: 19) were detected, and the patient was subsequently transferred to another hospital for the same mNGS with the same results as the first detection. Therefore, combined treatment with voriconazole, ethambutol, azithromycin, and levofloxacin were given to the <i>S. boydii</i> and MAC for 1 week, and then patient's condition improved and discharged.</p><p><strong>Conclusions: </strong>mNGS, a non-targeted sequencing technology, could improve the efficiency of clinical diagnosis for mixed infection of rare or atypical pathogens, bring new ideas for clinical pathogen diagnosis, and improve patient prognosis.</p>","PeriodicalId":29752,"journal":{"name":"AME Case Reports","volume":"9 ","pages":"3"},"PeriodicalIF":0.7000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760516/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AME Case Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21037/acr-24-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: There are hundreds of pathogens that cause lung infections. Compared to infections caused by a single pathogen, mixed infections account for a larger proportion of pulmonary infections and have a more severe clinical presentation, while treatment options differ between the two. We aimed to explore the advantages of metagenomic next-generation sequencing (mNGS) in the diagnosis and treatment of mixed infections.

Case description: To investigate the specific pathogens in a 79-year-old male pneumonia patient who had recurrent cough with poor empirical treatment, we collected bronchoalveolar lavage fluid (BALF) from the patient and performed mNGS technology, along with Sanger sequencing and polymerase chain reaction (PCR) was carried out to confirm the authenticity of the pathogens detected by mNGS. The findings showed that rare pathogen Scedosporium boydii (S. boydii, reads: 18) and Mycobacterium avium complex (MAC, reads: 19) were detected, and the patient was subsequently transferred to another hospital for the same mNGS with the same results as the first detection. Therefore, combined treatment with voriconazole, ethambutol, azithromycin, and levofloxacin were given to the S. boydii and MAC for 1 week, and then patient's condition improved and discharged.

Conclusions: mNGS, a non-targeted sequencing technology, could improve the efficiency of clinical diagnosis for mixed infection of rare or atypical pathogens, bring new ideas for clinical pathogen diagnosis, and improve patient prognosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Right atrial metastasis after renal cell carcinoma operation: a case report. Ultrasound, Doppler and other signs during drug-free transition from subclinical hypothyroidism to euthyroidism: a case report. Giant thymolipoma in a 16-year-old girl with multimodal diagnostic approach and surgical management: a case report. The diagnosis of eosinophilic granulomatosis with polyangiitis has been 'masked' by asthma: a case report. Fibromatosis of the breast: a case report and literature review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1