Xin Ni , Jingjing Li , Wei Yu , Fan Bai , Zongbao K. Zhao , Jiaoqi Gao , Fan Yang , Yongjin J. Zhou
{"title":"High-level production of free fatty acids from lignocellulose hydrolysate by co-utilizing glucose and xylose in yeast","authors":"Xin Ni , Jingjing Li , Wei Yu , Fan Bai , Zongbao K. Zhao , Jiaoqi Gao , Fan Yang , Yongjin J. Zhou","doi":"10.1016/j.synbio.2024.12.009","DOIUrl":null,"url":null,"abstract":"<div><div>Lignocellulose bio-refinery via microbial cell factories for chemical production represents a renewable and sustainable route in response to resource starvation and environmental concerns. However, the challenges associated with the co-utilization of xylose and glucose often hinders the efficiency of lignocellulose bioconversion. Here, we engineered yeast <em>Ogataea polymorpha</em> to effectively produce free fatty acids from lignocellulose. The non-oxidative branch of the pentose phosphate pathway, and the adaptive expression levels of xylose metabolic pathway genes <em>XYL1</em>, <em>XYL2</em> and <em>XYL3</em>, were systematically optimized. In addition, the introduction of xylose transporter and global regulation of transcription factors achieved synchronous co-utilization of glucose and xylose. The engineered strain produced 11.2 g/L FFAs from lignocellulose hydrolysates, with a yield of up to 0.054 g/g. This study demonstrated that metabolic rewiring of xylose metabolism could support the efficient co-utilization of glucose and xylose from lignocellulosic resources, which may provide theoretical reference for lignocellulose biorefinery.</div></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":"10 2","pages":"Pages 401-409"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758827/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic and Systems Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405805X24001613","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lignocellulose bio-refinery via microbial cell factories for chemical production represents a renewable and sustainable route in response to resource starvation and environmental concerns. However, the challenges associated with the co-utilization of xylose and glucose often hinders the efficiency of lignocellulose bioconversion. Here, we engineered yeast Ogataea polymorpha to effectively produce free fatty acids from lignocellulose. The non-oxidative branch of the pentose phosphate pathway, and the adaptive expression levels of xylose metabolic pathway genes XYL1, XYL2 and XYL3, were systematically optimized. In addition, the introduction of xylose transporter and global regulation of transcription factors achieved synchronous co-utilization of glucose and xylose. The engineered strain produced 11.2 g/L FFAs from lignocellulose hydrolysates, with a yield of up to 0.054 g/g. This study demonstrated that metabolic rewiring of xylose metabolism could support the efficient co-utilization of glucose and xylose from lignocellulosic resources, which may provide theoretical reference for lignocellulose biorefinery.
期刊介绍:
Synthetic and Systems Biotechnology aims to promote the communication of original research in synthetic and systems biology, with strong emphasis on applications towards biotechnology. This journal is a quarterly peer-reviewed journal led by Editor-in-Chief Lixin Zhang. The journal publishes high-quality research; focusing on integrative approaches to enable the understanding and design of biological systems, and research to develop the application of systems and synthetic biology to natural systems. This journal will publish Articles, Short notes, Methods, Mini Reviews, Commentary and Conference reviews.