Redox-Gated Optical Modulation of Coumarin-Triphenyliminophosphorane Fluorophores.

IF 3.7 Q2 CHEMISTRY, PHYSICAL ACS Physical Chemistry Au Pub Date : 2024-11-04 eCollection Date: 2025-01-22 DOI:10.1021/acsphyschemau.4c00082
Wei-Chu Huang, Yi-Yin Lu, Shiao-Chen Huang, Tai-Chung Lo, Shun-Yuan Luo, Wei-Hong Huang, Chih-Wei Luo, Vincent K-S Hsiao, Chih-Chien Chu
{"title":"Redox-Gated Optical Modulation of Coumarin-Triphenyliminophosphorane Fluorophores.","authors":"Wei-Chu Huang, Yi-Yin Lu, Shiao-Chen Huang, Tai-Chung Lo, Shun-Yuan Luo, Wei-Hong Huang, Chih-Wei Luo, Vincent K-S Hsiao, Chih-Chien Chu","doi":"10.1021/acsphyschemau.4c00082","DOIUrl":null,"url":null,"abstract":"<p><p>Novel coumarin-triphenyliminophosphorane (TPIPP) fluorophores, synthesized via a nonhydrolytic Staudinger reaction, exhibit remarkable redox-responsive optical properties. Upon chemical and electrochemical oxidation, these compounds display a hypsochromic shift in absorption from 430 to 350 nm, accompanied by up to 11-fold fluorescence enhancement under 405 nm excitation. The fluorescence switching occurs at an electrochemical oxidation potential of approximately +2.0 V. This enhanced one-photon excited fluorescence is attributed to an emissive radical effect, stemming from in situ generated radical cations at the polarizable iminophosphorane (P=N) bond. The radical formation was confirmed by trapping experiments using tetracyanoquinodimethane, which produced characteristic absorption of radical anions around 850 nm, and by electron spin resonance studies using 5,5-dimethyl-1-pyrroline <i>N</i>-oxide as a spin trap. Conversely, two-photon excited fluorescence under 800 nm pulsed laser excitation decreases upon oxidation, likely due to reduced two-photon absorption resulting from altered π-conjugation. This work demonstrates that external redox modulation can induce significant changes in absorption profiles and enable switching between enhanced one-photon and diminished two-photon excited fluorescence, highlighting the potential of leveraging the controllable radical character of the P=N bond in designing redox-responsive fluorophores.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 1","pages":"92-100"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758267/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Physical Chemistry Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsphyschemau.4c00082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/22 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Novel coumarin-triphenyliminophosphorane (TPIPP) fluorophores, synthesized via a nonhydrolytic Staudinger reaction, exhibit remarkable redox-responsive optical properties. Upon chemical and electrochemical oxidation, these compounds display a hypsochromic shift in absorption from 430 to 350 nm, accompanied by up to 11-fold fluorescence enhancement under 405 nm excitation. The fluorescence switching occurs at an electrochemical oxidation potential of approximately +2.0 V. This enhanced one-photon excited fluorescence is attributed to an emissive radical effect, stemming from in situ generated radical cations at the polarizable iminophosphorane (P=N) bond. The radical formation was confirmed by trapping experiments using tetracyanoquinodimethane, which produced characteristic absorption of radical anions around 850 nm, and by electron spin resonance studies using 5,5-dimethyl-1-pyrroline N-oxide as a spin trap. Conversely, two-photon excited fluorescence under 800 nm pulsed laser excitation decreases upon oxidation, likely due to reduced two-photon absorption resulting from altered π-conjugation. This work demonstrates that external redox modulation can induce significant changes in absorption profiles and enable switching between enhanced one-photon and diminished two-photon excited fluorescence, highlighting the potential of leveraging the controllable radical character of the P=N bond in designing redox-responsive fluorophores.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
期刊介绍: ACS Physical Chemistry Au is an open access journal which publishes original fundamental and applied research on all aspects of physical chemistry. The journal publishes new and original experimental computational and theoretical research of interest to physical chemists biophysical chemists chemical physicists physicists material scientists and engineers. An essential criterion for acceptance is that the manuscript provides new physical insight or develops new tools and methods of general interest. Some major topical areas include:Molecules Clusters and Aerosols; Biophysics Biomaterials Liquids and Soft Matter; Energy Materials and Catalysis
期刊最新文献
Issue Editorial Masthead Issue Publication Information Is the Future of Materials Amorphous? Challenges and Opportunities in Simulations of Amorphous Materials. Is the Future of Materials Amorphous? Challenges and Opportunities in Simulations of Amorphous Materials Design Criteria for Active and Selective Catalysts in the Nitrogen Oxidation Reaction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1