Huiyong Zhang, Brian C J Moore, Feng Jiang, Mingfang Diao, Fei Ji, Xiaodong Li, Chengshi Zheng
{"title":"Neural-WDRC: A Deep Learning Wide Dynamic Range Compression Method Combined With Controllable Noise Reduction for Hearing Aids.","authors":"Huiyong Zhang, Brian C J Moore, Feng Jiang, Mingfang Diao, Fei Ji, Xiaodong Li, Chengshi Zheng","doi":"10.1177/23312165241309301","DOIUrl":null,"url":null,"abstract":"<p><p>Wide dynamic range compression (WDRC) and noise reduction both play important roles in hearing aids. WDRC provides level-dependent amplification so that the level of sound produced by the hearing aid falls between the hearing threshold and the highest comfortable level of the listener, while noise reduction reduces ambient noise with the goal of improving intelligibility and listening comfort and reducing effort. In most current hearing aids, noise reduction and WDRC are implemented sequentially, but this may lead to distortion of the amplitude modulation patterns of both the speech and the noise. This paper describes a deep learning method, called Neural-WDRC, for implementing both noise reduction and WDRC, employing a two-stage low-complexity network. The network initially estimates the noise alone and the speech alone. Fast-acting compression is applied to the estimated speech and slow-acting compression to the estimated noise, but with a controllable residual noise level to help the user to perceive natural environmental sounds. Neural-WDRC is frame-based, and the output of the current frame is determined only by the current and preceding frames. Neural-WDRC was compared with conventional slow- and fast-acting compression and with signal-to-noise ratio (SNR)-aware compression using objective measures and listening tests based on normal-hearing participants listening to signals processed to simulate the effects of hearing loss and hearing-impaired participants. The objective measures demonstrated that Neural-WDRC effectively reduced negative interactions of speech and noise in highly non-stationary noise scenarios. The listening tests showed that Neural-WDRC was preferred over the other compression methods for speech in non-stationary noises.</p>","PeriodicalId":48678,"journal":{"name":"Trends in Hearing","volume":"29 ","pages":"23312165241309301"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770718/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Hearing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/23312165241309301","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Wide dynamic range compression (WDRC) and noise reduction both play important roles in hearing aids. WDRC provides level-dependent amplification so that the level of sound produced by the hearing aid falls between the hearing threshold and the highest comfortable level of the listener, while noise reduction reduces ambient noise with the goal of improving intelligibility and listening comfort and reducing effort. In most current hearing aids, noise reduction and WDRC are implemented sequentially, but this may lead to distortion of the amplitude modulation patterns of both the speech and the noise. This paper describes a deep learning method, called Neural-WDRC, for implementing both noise reduction and WDRC, employing a two-stage low-complexity network. The network initially estimates the noise alone and the speech alone. Fast-acting compression is applied to the estimated speech and slow-acting compression to the estimated noise, but with a controllable residual noise level to help the user to perceive natural environmental sounds. Neural-WDRC is frame-based, and the output of the current frame is determined only by the current and preceding frames. Neural-WDRC was compared with conventional slow- and fast-acting compression and with signal-to-noise ratio (SNR)-aware compression using objective measures and listening tests based on normal-hearing participants listening to signals processed to simulate the effects of hearing loss and hearing-impaired participants. The objective measures demonstrated that Neural-WDRC effectively reduced negative interactions of speech and noise in highly non-stationary noise scenarios. The listening tests showed that Neural-WDRC was preferred over the other compression methods for speech in non-stationary noises.
Trends in HearingAUDIOLOGY & SPEECH-LANGUAGE PATHOLOGYOTORH-OTORHINOLARYNGOLOGY
CiteScore
4.50
自引率
11.10%
发文量
44
审稿时长
12 weeks
期刊介绍:
Trends in Hearing is an open access journal completely dedicated to publishing original research and reviews focusing on human hearing, hearing loss, hearing aids, auditory implants, and aural rehabilitation. Under its former name, Trends in Amplification, the journal established itself as a forum for concise explorations of all areas of translational hearing research by leaders in the field. Trends in Hearing has now expanded its focus to include original research articles, with the goal of becoming the premier venue for research related to human hearing and hearing loss.