ImmuNet: a segmentation-free machine learning pipeline for immune landscape phenotyping in tumors by multiplex imaging.

IF 2.5 Q3 BIOCHEMICAL RESEARCH METHODS Biology Methods and Protocols Pub Date : 2024-12-20 eCollection Date: 2025-01-01 DOI:10.1093/biomethods/bpae094
Shabaz Sultan, Mark A J Gorris, Evgenia Martynova, Lieke L van der Woude, Franka Buytenhuijs, Sandra van Wilpe, Kiek Verrijp, Carl G Figdor, I Jolanda M de Vries, Johannes Textor
{"title":"ImmuNet: a segmentation-free machine learning pipeline for immune landscape phenotyping in tumors by multiplex imaging.","authors":"Shabaz Sultan, Mark A J Gorris, Evgenia Martynova, Lieke L van der Woude, Franka Buytenhuijs, Sandra van Wilpe, Kiek Verrijp, Carl G Figdor, I Jolanda M de Vries, Johannes Textor","doi":"10.1093/biomethods/bpae094","DOIUrl":null,"url":null,"abstract":"<p><p>Tissue specimens taken from primary tumors or metastases contain important information for diagnosis and treatment of cancer patients. Multiplex imaging allows <i>in situ</i> visualization of heterogeneous cell populations, such as immune cells, in tissue samples. Most image processing pipelines first segment cell boundaries and then measure marker expression to assign cell phenotypes. In dense tissue environments, this segmentation-first approach can be inaccurate due to segmentation errors or overlapping cells. Here, we introduce the machine-learning pipeline \"ImmuNet\", which identifies positions and phenotypes of cells without segmenting them. ImmuNet is easy to train: human annotators only need to click on an immune cell and score its expression of each marker-drawing a full cell outline is not required. We trained and evaluated ImmuNet on multiplex images from human tonsil, lung cancer, prostate cancer, melanoma, and bladder cancer tissue samples and found it to consistently achieve error rates below 5%-10% across tissue types, cell types, and tissue densities, outperforming a segmentation-based baseline method. Furthermore, we externally validate ImmuNet results by comparing them to flow cytometric cell count measurements from the same tissue. In summary, ImmuNet is an effective, simpler alternative to segmentation-based approaches when only cell positions and phenotypes, but not their shapes, are required for downstream analyses. Thus, ImmuNet helps researchers to analyze cell positions in multiplex tissue images more easily and accurately.</p>","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":"10 1","pages":"bpae094"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769680/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Methods and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/biomethods/bpae094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Tissue specimens taken from primary tumors or metastases contain important information for diagnosis and treatment of cancer patients. Multiplex imaging allows in situ visualization of heterogeneous cell populations, such as immune cells, in tissue samples. Most image processing pipelines first segment cell boundaries and then measure marker expression to assign cell phenotypes. In dense tissue environments, this segmentation-first approach can be inaccurate due to segmentation errors or overlapping cells. Here, we introduce the machine-learning pipeline "ImmuNet", which identifies positions and phenotypes of cells without segmenting them. ImmuNet is easy to train: human annotators only need to click on an immune cell and score its expression of each marker-drawing a full cell outline is not required. We trained and evaluated ImmuNet on multiplex images from human tonsil, lung cancer, prostate cancer, melanoma, and bladder cancer tissue samples and found it to consistently achieve error rates below 5%-10% across tissue types, cell types, and tissue densities, outperforming a segmentation-based baseline method. Furthermore, we externally validate ImmuNet results by comparing them to flow cytometric cell count measurements from the same tissue. In summary, ImmuNet is an effective, simpler alternative to segmentation-based approaches when only cell positions and phenotypes, but not their shapes, are required for downstream analyses. Thus, ImmuNet helps researchers to analyze cell positions in multiplex tissue images more easily and accurately.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biology Methods and Protocols
Biology Methods and Protocols Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
3.80
自引率
2.80%
发文量
28
审稿时长
19 weeks
期刊最新文献
Correction to: Real time-PCR a diagnostic tool for reporting copy number variation and relative gene-expression changes in pediatric B-cell acute lymphoblastic leukemia-a pilot study. Development of a highly sensitive method to detect translational infidelity. Association of cognitive deficits with sociodemographic characteristics among adults with post-COVID conditions: Findings from the United States household pulse survey. An improved cell nuclear isolation method. PUPMCR: an R package for image-based identification of color based on Rayner's (1970) terminology and known fungal pigments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1