Evaluation of charge summing correction in CdTe-based photon-counting detectors for breast CT: performance metrics and image quality.

IF 1.9 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Medical Imaging Pub Date : 2025-01-01 Epub Date: 2025-01-25 DOI:10.1117/1.JMI.12.1.013501
Sriharsha Marupudi, Joseph A Manus, Muhammad U Ghani, Stephen J Glick, Bahaa Ghammraoui
{"title":"Evaluation of charge summing correction in CdTe-based photon-counting detectors for breast CT: performance metrics and image quality.","authors":"Sriharsha Marupudi, Joseph A Manus, Muhammad U Ghani, Stephen J Glick, Bahaa Ghammraoui","doi":"10.1117/1.JMI.12.1.013501","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>We evaluate the impact of charge summing correction on a cadmium telluride (CdTe)-based photon-counting detector in breast computed tomography (CT).</p><p><strong>Approach: </strong>We employ a custom-built laboratory benchtop system using the X-THOR FX30 0.75-mm CdTe detector (Varex Imaging, Salt Lake City, Utah, United States) with a pixel pitch of 0.1 mm, operated in both standard mode [single pixel (SP)] and charge summing correction mode [anticoincidence (AC)]. A tungsten anode source operated at 55 kVp with 2-mm aluminum external filtration and tube currents of 25, 100, and 200 mA with corresponding exposure times of 20, 5, and 2.5 ms were employed to study the effects of X-ray fluence and pulse pileup. Performance comparisons between AC and SP modes are performed in both projection and image reconstructed spaces. In the projection space, performance metrics include count rate, energy resolution, uniformity, modulation transfer function (MTF), and noise power spectrum (NPS). In the image space, performance metrics consist of contrast-to-noise ratio (CNR), uniformity, NPS, and iodine quantification accuracy. For both acquisition modes, signal-to-thickness calibration, for gain and beam hardening corrections, is used before image reconstruction. Images are reconstructed via TIGRE CT software using the standard Feldkamp, Davis, and Kress (FDK) filtered back projection algorithm with a Hann filter and reconstructed with a voxel size of 0.081 mm. Material decomposition is performed using a standard image-based method.</p><p><strong>Results: </strong>In the detector space, the application of hardware-based charge summing correction enhances spectral resolution and improves the spatial resolution of MTF at lower energy thresholds but introduces anomalous edge enhancement effects and artifacts in the MTF at high fluence. A negative noise correlation was observed in AC mode-acquired images. As expected, the AC acquisition mode results in a decreased detector count rate. In the image space, NPS results displayed elevated noise in low-energy AC images. However, at high energy, noise was comparable between both modes. Greater uniformity was observed in SP mode-acquired images. The largest disparity was observed in the iodine quantification test, where the AC mode demonstrates a much stronger linear relationship between estimated and true iodine concentrations than the SP mode.</p><p><strong>Conclusion: </strong>The results are specific to the studied system, reconstruction parameters, and irradiation conditions limited to 200 mA and 0.5 mAs. The AC mode generally provides better energy and MTF resolution at low energy thresholds but with increased noise and reduced uniformity. In image space, charge summing correction improved iodine quantification and CNR at high energy thresholds.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 1","pages":"013501"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759667/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.12.1.013501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: We evaluate the impact of charge summing correction on a cadmium telluride (CdTe)-based photon-counting detector in breast computed tomography (CT).

Approach: We employ a custom-built laboratory benchtop system using the X-THOR FX30 0.75-mm CdTe detector (Varex Imaging, Salt Lake City, Utah, United States) with a pixel pitch of 0.1 mm, operated in both standard mode [single pixel (SP)] and charge summing correction mode [anticoincidence (AC)]. A tungsten anode source operated at 55 kVp with 2-mm aluminum external filtration and tube currents of 25, 100, and 200 mA with corresponding exposure times of 20, 5, and 2.5 ms were employed to study the effects of X-ray fluence and pulse pileup. Performance comparisons between AC and SP modes are performed in both projection and image reconstructed spaces. In the projection space, performance metrics include count rate, energy resolution, uniformity, modulation transfer function (MTF), and noise power spectrum (NPS). In the image space, performance metrics consist of contrast-to-noise ratio (CNR), uniformity, NPS, and iodine quantification accuracy. For both acquisition modes, signal-to-thickness calibration, for gain and beam hardening corrections, is used before image reconstruction. Images are reconstructed via TIGRE CT software using the standard Feldkamp, Davis, and Kress (FDK) filtered back projection algorithm with a Hann filter and reconstructed with a voxel size of 0.081 mm. Material decomposition is performed using a standard image-based method.

Results: In the detector space, the application of hardware-based charge summing correction enhances spectral resolution and improves the spatial resolution of MTF at lower energy thresholds but introduces anomalous edge enhancement effects and artifacts in the MTF at high fluence. A negative noise correlation was observed in AC mode-acquired images. As expected, the AC acquisition mode results in a decreased detector count rate. In the image space, NPS results displayed elevated noise in low-energy AC images. However, at high energy, noise was comparable between both modes. Greater uniformity was observed in SP mode-acquired images. The largest disparity was observed in the iodine quantification test, where the AC mode demonstrates a much stronger linear relationship between estimated and true iodine concentrations than the SP mode.

Conclusion: The results are specific to the studied system, reconstruction parameters, and irradiation conditions limited to 200 mA and 0.5 mAs. The AC mode generally provides better energy and MTF resolution at low energy thresholds but with increased noise and reduced uniformity. In image space, charge summing correction improved iodine quantification and CNR at high energy thresholds.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Medical Imaging
Journal of Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.10
自引率
4.20%
发文量
0
期刊介绍: JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.
期刊最新文献
In-silico study of the impact of system design parameters on microcalcification detection in wide-angle digital breast tomosynthesis. Estimation of the absorbed dose in simultaneous digital breast tomosynthesis and mechanical imaging. Breathing motion compensation in chest tomosynthesis: evaluation of the effect on image quality and presence of artifacts. Automated assessment of task-based performance of digital mammography and tomosynthesis systems using an anthropomorphic breast phantom and deep learning-based scoring. Our journey toward implementation of digital breast tomosynthesis in breast cancer screening: the Malmö Breast Tomosynthesis Screening Project.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1