Carbon monoxide-oxidising Pseudomonadota on volcanic deposits.

IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY Environmental Microbiome Pub Date : 2025-01-26 DOI:10.1186/s40793-025-00672-y
Robin A Dawson, Nicola Fantom, Tamara Martin-Pozas, Patricia Aguila, Gary M King, Marcela Hernández
{"title":"Carbon monoxide-oxidising Pseudomonadota on volcanic deposits.","authors":"Robin A Dawson, Nicola Fantom, Tamara Martin-Pozas, Patricia Aguila, Gary M King, Marcela Hernández","doi":"10.1186/s40793-025-00672-y","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon monoxide (CO) oxidising microorganisms are present in volcanic deposits throughout succession, with levels of vegetation and soil influencing the communities present. Carboxydovores are a subset of CO oxidisers that use CO as an energy source, which raises questions about the physiological and metabolic features that make them more competitive in harsh volcanic ecosystems. To address these questions, samples were taken from volcanic strata formed by eruptions from Calbuco Volcano (Chile) in 2015 (tephra) and 1917 (soil). Two carboxydovore members of the Burkholderiaceae family were isolated for further study to elucidate the benefits of carboxydovory for the survival of these strains in extreme volcanic ecosystems. The isolates were identified as Paraburkholderia terrae COX (isolated from the 2015 tephra) and Cupriavidus str. CV2 (isolated from the 1917 soil). 16S rRNA gene sequencing showed that within the family Burkholderiacea, the genus Paraburkholderia dominated the 2015 volcanic deposit with an average relative abundance of 73.81%, whereas in the 1917 volcanic deposit, Cupriavidus accounted for 33.64% (average relative abundance). Both strains oxidise CO across a broad range of concentrations (< 100 ppmv - 10,000 ppmv), and genome sequence analysis revealed a candidate form-I carbon monoxide dehydrogenase (CODH), which is likely to catalyse this process. Each strain oxidised CO specifically at stationary phase but the conditions for induction of CODH expression were distinct. Cupriavidus strain CV2 expressed CODH only when CO was added to cultures (100 ppm), while Pb. terrae COX expressed CODH regardless of supplementary CO addition. Based on comparative metabolic and phylogenetic analyses, Cupriavidus strain CV2 is proposed as a novel species within the genus Cupriavidus with the name Cupriavidus ulmosensis sp. nov. for the type strain CV2<sup>T</sup> (= NCIMB 15506<sup> T</sup>, = CECT 30956<sup> T</sup>). This study provides valuable insights into the physiology and metabolism of carboxydovores which colonise volcanic ecosystems.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"20 1","pages":"12"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771112/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiome","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1186/s40793-025-00672-y","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon monoxide (CO) oxidising microorganisms are present in volcanic deposits throughout succession, with levels of vegetation and soil influencing the communities present. Carboxydovores are a subset of CO oxidisers that use CO as an energy source, which raises questions about the physiological and metabolic features that make them more competitive in harsh volcanic ecosystems. To address these questions, samples were taken from volcanic strata formed by eruptions from Calbuco Volcano (Chile) in 2015 (tephra) and 1917 (soil). Two carboxydovore members of the Burkholderiaceae family were isolated for further study to elucidate the benefits of carboxydovory for the survival of these strains in extreme volcanic ecosystems. The isolates were identified as Paraburkholderia terrae COX (isolated from the 2015 tephra) and Cupriavidus str. CV2 (isolated from the 1917 soil). 16S rRNA gene sequencing showed that within the family Burkholderiacea, the genus Paraburkholderia dominated the 2015 volcanic deposit with an average relative abundance of 73.81%, whereas in the 1917 volcanic deposit, Cupriavidus accounted for 33.64% (average relative abundance). Both strains oxidise CO across a broad range of concentrations (< 100 ppmv - 10,000 ppmv), and genome sequence analysis revealed a candidate form-I carbon monoxide dehydrogenase (CODH), which is likely to catalyse this process. Each strain oxidised CO specifically at stationary phase but the conditions for induction of CODH expression were distinct. Cupriavidus strain CV2 expressed CODH only when CO was added to cultures (100 ppm), while Pb. terrae COX expressed CODH regardless of supplementary CO addition. Based on comparative metabolic and phylogenetic analyses, Cupriavidus strain CV2 is proposed as a novel species within the genus Cupriavidus with the name Cupriavidus ulmosensis sp. nov. for the type strain CV2T (= NCIMB 15506 T, = CECT 30956 T). This study provides valuable insights into the physiology and metabolism of carboxydovores which colonise volcanic ecosystems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Microbiome
Environmental Microbiome Immunology and Microbiology-Microbiology
CiteScore
7.40
自引率
2.50%
发文量
55
审稿时长
13 weeks
期刊介绍: Microorganisms, omnipresent across Earth's diverse environments, play a crucial role in adapting to external changes, influencing Earth's systems and cycles, and contributing significantly to agricultural practices. Through applied microbiology, they offer solutions to various everyday needs. Environmental Microbiome recognizes the universal presence and significance of microorganisms, inviting submissions that explore the diverse facets of environmental and applied microbiological research.
期刊最新文献
A systematic scoping review reveals that geographic and taxonomic patterns influence the scientific and societal interest in urban soil microbial diversity. Plant-microbe interactions influence plant performance via boosting beneficial root-endophytic bacteria. Insights into quinoa endophytes: core bacterial communities reveal high stability to water stress and genotypic variation. Commercial bioinoculants improve colonization but do not alter the arbuscular mycorrhizal fungal community of greenhouse-grown grapevine roots. Peptide nucleic acid (PNA) clamps reduce amplification of host chloroplast and mitochondria rRNA gene sequences and increase detected diversity in 16S rRNA gene profiling analysis of oak-associated microbiota.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1