Rescue of interfragmentary compression in screw stripping failures: The efficacy of NiTiNOL.

IF 1.3 4区 医学 Q2 Medicine Journal of Foot & Ankle Surgery Pub Date : 2025-01-24 DOI:10.1053/j.jfas.2025.01.006
Shannon King, Claudia Vitale, Rachel Grosswald, Taylor Filicette, James Johnson, Akhilesh Gokhale, Gregory Berlet, David L Safranski
{"title":"Rescue of interfragmentary compression in screw stripping failures: The efficacy of NiTiNOL.","authors":"Shannon King, Claudia Vitale, Rachel Grosswald, Taylor Filicette, James Johnson, Akhilesh Gokhale, Gregory Berlet, David L Safranski","doi":"10.1053/j.jfas.2025.01.006","DOIUrl":null,"url":null,"abstract":"<p><p>Orthopedic screws are widely used to achieve bone reduction, compression, and construct stability. However, the relationship between insertion torque, interfragmentary compression, and fixation strength, especially when comparing standard screws with NiTiNOL/sustained dynamic compression (SDC), has not been thoroughly investigated. This study measured insertion torque, interfragmentary compression, and fixation strength for two types of headed orthopedic devices-standard and SDC-using solid foam bone replicates and cadaver validation. The study also assessed the interfragmentary compression produced by these devices in the context of simulated bone resorption. Results showed that compression force increased with insertion torque until thread stripping occurred, resulting in a 91.9 % loss of compression in the standard screw group. In contrast, the SDC device maintained significantly higher compression, even beyond the point of stripping. These findings suggest that SDC devices offer increased safety by continuing to apply interfragmentary compression after stripping. The SDC device's ability to generate internal compression allows it to re-engage threads into undamaged bone, potentially compensating for compression loss due to stripping. Clinically, these results indicate that surgeons might benefit from deliberately undershooting peak insertion torque, regardless of the device type, and may prefer NiTiNOL-based SDC devices for their resilience to stripping and bone resorption, ultimately optimizing patient outcomes in foot and ankle surgery.</p>","PeriodicalId":50191,"journal":{"name":"Journal of Foot & Ankle Surgery","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Foot & Ankle Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1053/j.jfas.2025.01.006","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Orthopedic screws are widely used to achieve bone reduction, compression, and construct stability. However, the relationship between insertion torque, interfragmentary compression, and fixation strength, especially when comparing standard screws with NiTiNOL/sustained dynamic compression (SDC), has not been thoroughly investigated. This study measured insertion torque, interfragmentary compression, and fixation strength for two types of headed orthopedic devices-standard and SDC-using solid foam bone replicates and cadaver validation. The study also assessed the interfragmentary compression produced by these devices in the context of simulated bone resorption. Results showed that compression force increased with insertion torque until thread stripping occurred, resulting in a 91.9 % loss of compression in the standard screw group. In contrast, the SDC device maintained significantly higher compression, even beyond the point of stripping. These findings suggest that SDC devices offer increased safety by continuing to apply interfragmentary compression after stripping. The SDC device's ability to generate internal compression allows it to re-engage threads into undamaged bone, potentially compensating for compression loss due to stripping. Clinically, these results indicate that surgeons might benefit from deliberately undershooting peak insertion torque, regardless of the device type, and may prefer NiTiNOL-based SDC devices for their resilience to stripping and bone resorption, ultimately optimizing patient outcomes in foot and ankle surgery.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Foot & Ankle Surgery
Journal of Foot & Ankle Surgery ORTHOPEDICS-SURGERY
CiteScore
2.30
自引率
7.70%
发文量
234
审稿时长
29.8 weeks
期刊介绍: The Journal of Foot & Ankle Surgery is the leading source for original, clinically-focused articles on the surgical and medical management of the foot and ankle. Each bi-monthly, peer-reviewed issue addresses relevant topics to the profession, such as: adult reconstruction of the forefoot; adult reconstruction of the hindfoot and ankle; diabetes; medicine/rheumatology; pediatrics; research; sports medicine; trauma; and tumors.
期刊最新文献
Readability of Foot and Ankle Patient-Reported Outcomes: Alignment with National Institutes of Health and American Medical Association Standards. Who's Really Footing the Bill? Sex and Ethnicity Disparities in the Cost of Diabetic Foot Ulcer-Related Amputations in a Major Healthcare System. Lateral Wall Displacement of Calcaneal Fracture Leading to Peroneal Tendon Dislocation: Effect of the Distance of Lateral Wall Displacement on the incidence of Peroneal Tendon Dislocation. Simultaneous Bilateral Surgery for Accessory Naviculars does not Have a Negative Effect on Postoperative Outcome. Volumetric assessment of the soft tissue envelope in unilateral closed ankle fractures using a portable 3D scanner.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1