{"title":"Kisspeptin control of hypothalamus-pituitary-ovarian functions.","authors":"K P Joy, R Chaube","doi":"10.1016/bs.vh.2024.06.005","DOIUrl":null,"url":null,"abstract":"<p><p>The discovery of Kisspeptin (Kiss) has opened a new direction in research on neuroendocrine control of reproduction in vertebrates. Belonging to the RF amide family of peptides, Kiss and its cognate receptor Gpr54 (Kissr) have a long and complex evolutionary history. Multiple forms of Kiss and Kissr are identified in non-mammalian vertebrates, with the exception of birds, and monotreme mammals. However, only a single form of the ligand (KISS1/Kiss1) and receptor (KISS1R/Kiss1r) is retained in higher mammals. Kiss1 is distributed in the hypothalamus-pituitary-gonadal (HPG) axis and its primary function is to stimulate gonadotropin-releasing hormone (GnRH) secretion. Kiss1 neurons are distributed in the rostral periventricular area of the third ventricle (RP3V) and arcuate/infundibular nucleus (ARN/IFN). The ARN/IFN is considered the GnRH pulse generator controlled by steroid negative feedback, and the RP3V neurons is concerned with GnRH surge induced by steroid positive feedback in females. The Kiss1-Kiss1r signaling is important in all aspects of reproduction: puberty onset, maintenance of adult gonadal functions and reproductive aging, and hence assumes therapeutic potentials in the treatment of reproductive dysfunctions and induction of artificial reproduction. This chapter reviews involvement of Kiss1 in the control of the HPG axis functions in female mammals.</p>","PeriodicalId":51209,"journal":{"name":"Vitamins and Hormones","volume":"127 ","pages":"153-206"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vitamins and Hormones","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/bs.vh.2024.06.005","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
The discovery of Kisspeptin (Kiss) has opened a new direction in research on neuroendocrine control of reproduction in vertebrates. Belonging to the RF amide family of peptides, Kiss and its cognate receptor Gpr54 (Kissr) have a long and complex evolutionary history. Multiple forms of Kiss and Kissr are identified in non-mammalian vertebrates, with the exception of birds, and monotreme mammals. However, only a single form of the ligand (KISS1/Kiss1) and receptor (KISS1R/Kiss1r) is retained in higher mammals. Kiss1 is distributed in the hypothalamus-pituitary-gonadal (HPG) axis and its primary function is to stimulate gonadotropin-releasing hormone (GnRH) secretion. Kiss1 neurons are distributed in the rostral periventricular area of the third ventricle (RP3V) and arcuate/infundibular nucleus (ARN/IFN). The ARN/IFN is considered the GnRH pulse generator controlled by steroid negative feedback, and the RP3V neurons is concerned with GnRH surge induced by steroid positive feedback in females. The Kiss1-Kiss1r signaling is important in all aspects of reproduction: puberty onset, maintenance of adult gonadal functions and reproductive aging, and hence assumes therapeutic potentials in the treatment of reproductive dysfunctions and induction of artificial reproduction. This chapter reviews involvement of Kiss1 in the control of the HPG axis functions in female mammals.
期刊介绍:
First published in 1943, Vitamins and Hormones is the longest-running serial published by Academic Press. In the early days of the serial, the subjects of vitamins and hormones were quite distinct. The Editorial Board now reflects expertise in the field of hormone action, vitamin action, X-ray crystal structure, physiology, and enzyme mechanisms. Vitamins and Hormones continues to publish cutting-edge reviews of interest to endocrinologists, biochemists, nutritionists, pharmacologists, cell biologists, and molecular biologists. Others interested in the structure and function of biologically active molecules like hormones and vitamins will, as always, turn to this series for comprehensive reviews by leading contributors to this and related disciplines.