Performance of an Electronic Health Record-Based Automated Pulmonary Embolism Severity Index Score Calculator: Cohort Study in the Emergency Department.

IF 3.1 3区 医学 Q2 MEDICAL INFORMATICS JMIR Medical Informatics Pub Date : 2025-01-20 DOI:10.2196/58800
Elizabeth Joyce, James McMullen, Xiaowen Kong, Connor O'Hare, Valerie Gavrila, Anthony Cuttitta, Geoffrey D Barnes, Colin F Greineder
{"title":"Performance of an Electronic Health Record-Based Automated Pulmonary Embolism Severity Index Score Calculator: Cohort Study in the Emergency Department.","authors":"Elizabeth Joyce, James McMullen, Xiaowen Kong, Connor O'Hare, Valerie Gavrila, Anthony Cuttitta, Geoffrey D Barnes, Colin F Greineder","doi":"10.2196/58800","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Studies suggest that less than 4% of patients with pulmonary embolisms (PEs) are managed in the outpatient setting. Strong evidence and multiple guidelines support the use of the Pulmonary Embolism Severity Index (PESI) for the identification of acute PE patients appropriate for outpatient management. However, calculating the PESI score can be inconvenient in a busy emergency department (ED). To facilitate integration into ED workflow, we created a 2023 Epic-compatible clinical decision support tool that automatically calculates the PESI score in real-time with patients' electronic health data (ePESI [Electronic Pulmonary Embolism Severity Index]).</p><p><strong>Objective: </strong>The primary objectives of this study were to determine the overall accuracy of ePESI and its ability to correctly distinguish high- and low-risk PESI scores within the Epic 2023 software. The secondary objective was to identify variables that impact ePESI accuracy.</p><p><strong>Methods: </strong>We collected ePESI scores on 500 consecutive patients at least 18 years old who underwent a computerized tomography-pulmonary embolism scan in the ED of our tertiary, academic health center between January 3 and February 15, 2023. We compared ePESI results to a PESI score calculated by 2 independent, medically-trained abstractors blinded to the ePESI and each other's results. ePESI accuracy was calculated with binomial test. The odds ratio (OR) was calculated using logistic regression.</p><p><strong>Results: </strong>Of the 500 patients, a total of 203 (40.6%) and 297 (59.4%) patients had low- and high-risk PESI scores, respectively. The ePESI exactly matched the calculated PESI in 394 out of 500 cases, with an accuracy of 78.8% (95% CI 74.9%-82.3%), and correctly identified low- versus high-risk in 477 out of 500 (95.4%) cases. The accuracy of the ePESI was higher for low-risk scores (OR 2.96, P<.001) and lower when patients were without prior encounters in the health system (OR 0.42, P=.008).</p><p><strong>Conclusions: </strong>In this single-center study, the ePESI was highly accurate in discriminating between low- and high-risk scores. The clinical decision support should facilitate real-time identification of patients who may be candidates for outpatient PE management.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"13 ","pages":"e58800"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769779/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/58800","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Studies suggest that less than 4% of patients with pulmonary embolisms (PEs) are managed in the outpatient setting. Strong evidence and multiple guidelines support the use of the Pulmonary Embolism Severity Index (PESI) for the identification of acute PE patients appropriate for outpatient management. However, calculating the PESI score can be inconvenient in a busy emergency department (ED). To facilitate integration into ED workflow, we created a 2023 Epic-compatible clinical decision support tool that automatically calculates the PESI score in real-time with patients' electronic health data (ePESI [Electronic Pulmonary Embolism Severity Index]).

Objective: The primary objectives of this study were to determine the overall accuracy of ePESI and its ability to correctly distinguish high- and low-risk PESI scores within the Epic 2023 software. The secondary objective was to identify variables that impact ePESI accuracy.

Methods: We collected ePESI scores on 500 consecutive patients at least 18 years old who underwent a computerized tomography-pulmonary embolism scan in the ED of our tertiary, academic health center between January 3 and February 15, 2023. We compared ePESI results to a PESI score calculated by 2 independent, medically-trained abstractors blinded to the ePESI and each other's results. ePESI accuracy was calculated with binomial test. The odds ratio (OR) was calculated using logistic regression.

Results: Of the 500 patients, a total of 203 (40.6%) and 297 (59.4%) patients had low- and high-risk PESI scores, respectively. The ePESI exactly matched the calculated PESI in 394 out of 500 cases, with an accuracy of 78.8% (95% CI 74.9%-82.3%), and correctly identified low- versus high-risk in 477 out of 500 (95.4%) cases. The accuracy of the ePESI was higher for low-risk scores (OR 2.96, P<.001) and lower when patients were without prior encounters in the health system (OR 0.42, P=.008).

Conclusions: In this single-center study, the ePESI was highly accurate in discriminating between low- and high-risk scores. The clinical decision support should facilitate real-time identification of patients who may be candidates for outpatient PE management.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
JMIR Medical Informatics
JMIR Medical Informatics Medicine-Health Informatics
CiteScore
7.90
自引率
3.10%
发文量
173
审稿时长
12 weeks
期刊介绍: JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals. Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.
期刊最新文献
Machine Learning-Based Risk Factor Analysis and Prediction Model Construction for the Occurrence of Chronic Heart Failure: Health Ecologic Study. Smart Contracts and Shared Platforms in Sustainable Health Care: Systematic Review. Diagnostic Decision-Making Variability Between Novice and Expert Optometrists for Glaucoma: Comparative Analysis to Inform AI System Design. The Social Construction of Categorical Data: Mixed Methods Approach to Assessing Data Features in Publicly Available Datasets. Digital Representation of Patients as Medical Digital Twins: Data-Centric Viewpoint.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1