Corwin Zigler, Vera Liu, Fabrizia Mealli, Laura Forastiere
{"title":"Bipartite interference and air pollution transport: estimating health effects of power plant interventions.","authors":"Corwin Zigler, Vera Liu, Fabrizia Mealli, Laura Forastiere","doi":"10.1093/biostatistics/kxae051","DOIUrl":null,"url":null,"abstract":"<p><p>Evaluating air quality interventions is confronted with the challenge of interference since interventions at a particular pollution source likely impact air quality and health at distant locations, and air quality and health at any given location are likely impacted by interventions at many sources. The structure of interference in this context is dictated by complex atmospheric processes governing how pollution emitted from a particular source is transformed and transported across space and can be cast with a bipartite structure reflecting the two distinct types of units: (i) interventional units on which treatments are applied or withheld to change pollution emissions; and (ii) outcome units on which outcomes of primary interest are measured. We propose new estimands for bipartite causal inference with interference that construe two components of treatment: a \"key-associated\" (or \"individual\") treatment and an \"upwind\" (or \"neighborhood\") treatment. Estimation is carried out using a covariate adjustment approach based on a joint propensity score. A reduced-complexity atmospheric model characterizes the structure of the interference network by modeling the movement of air parcels through time and space. The new methods are deployed to evaluate the effectiveness of installing flue-gas desulfurization scrubbers on 472 coal-burning power plants (the interventional units) in reducing Medicare hospitalizations among 21,577,552 Medicare beneficiaries residing across 25,553 ZIP codes in the United States (the outcome units).</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxae051","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Evaluating air quality interventions is confronted with the challenge of interference since interventions at a particular pollution source likely impact air quality and health at distant locations, and air quality and health at any given location are likely impacted by interventions at many sources. The structure of interference in this context is dictated by complex atmospheric processes governing how pollution emitted from a particular source is transformed and transported across space and can be cast with a bipartite structure reflecting the two distinct types of units: (i) interventional units on which treatments are applied or withheld to change pollution emissions; and (ii) outcome units on which outcomes of primary interest are measured. We propose new estimands for bipartite causal inference with interference that construe two components of treatment: a "key-associated" (or "individual") treatment and an "upwind" (or "neighborhood") treatment. Estimation is carried out using a covariate adjustment approach based on a joint propensity score. A reduced-complexity atmospheric model characterizes the structure of the interference network by modeling the movement of air parcels through time and space. The new methods are deployed to evaluate the effectiveness of installing flue-gas desulfurization scrubbers on 472 coal-burning power plants (the interventional units) in reducing Medicare hospitalizations among 21,577,552 Medicare beneficiaries residing across 25,553 ZIP codes in the United States (the outcome units).
期刊介绍:
Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.