Recurrent events modeling based on a reflected Brownian motion with application to hypoglycemia.

IF 1.8 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Biostatistics Pub Date : 2024-12-31 DOI:10.1093/biostatistics/kxae053
Yingfa Xie, Haoda Fu, Yuan Huang, Vladimir Pozdnyakov, Jun Yan
{"title":"Recurrent events modeling based on a reflected Brownian motion with application to hypoglycemia.","authors":"Yingfa Xie, Haoda Fu, Yuan Huang, Vladimir Pozdnyakov, Jun Yan","doi":"10.1093/biostatistics/kxae053","DOIUrl":null,"url":null,"abstract":"<p><p>Patients with type 2 diabetes need to closely monitor blood sugar levels as their routine diabetes self-management. Although many treatment agents aim to tightly control blood sugar, hypoglycemia often stands as an adverse event. In practice, patients can observe hypoglycemic events more easily than hyperglycemic events due to the perception of neurogenic symptoms. We propose to model each patient's observed hypoglycemic event as a lower boundary crossing event for a reflected Brownian motion with an upper reflection barrier. The lower boundary is set by clinical standards. To capture patient heterogeneity and within-patient dependence, covariates and a patient level frailty are incorporated into the volatility and the upper reflection barrier. This framework provides quantification for the underlying glucose level variability, patients heterogeneity, and risk factors' impact on glucose. We make inferences based on a Bayesian framework using Markov chain Monte Carlo. Two model comparison criteria, the deviance information criterion and the logarithm of the pseudo-marginal likelihood, are used for model selection. The methodology is validated in simulation studies. In analyzing a dataset from the diabetic patients in the DURABLE trial, our model provides adequate fit, generates data similar to the observed data, and offers insights that could be missed by other models.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxae053","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Patients with type 2 diabetes need to closely monitor blood sugar levels as their routine diabetes self-management. Although many treatment agents aim to tightly control blood sugar, hypoglycemia often stands as an adverse event. In practice, patients can observe hypoglycemic events more easily than hyperglycemic events due to the perception of neurogenic symptoms. We propose to model each patient's observed hypoglycemic event as a lower boundary crossing event for a reflected Brownian motion with an upper reflection barrier. The lower boundary is set by clinical standards. To capture patient heterogeneity and within-patient dependence, covariates and a patient level frailty are incorporated into the volatility and the upper reflection barrier. This framework provides quantification for the underlying glucose level variability, patients heterogeneity, and risk factors' impact on glucose. We make inferences based on a Bayesian framework using Markov chain Monte Carlo. Two model comparison criteria, the deviance information criterion and the logarithm of the pseudo-marginal likelihood, are used for model selection. The methodology is validated in simulation studies. In analyzing a dataset from the diabetic patients in the DURABLE trial, our model provides adequate fit, generates data similar to the observed data, and offers insights that could be missed by other models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biostatistics
Biostatistics 生物-数学与计算生物学
CiteScore
5.10
自引率
4.80%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.
期刊最新文献
Testing for a difference in means of a single feature after clustering. Unveiling Schizophrenia: a study with generalized functional linear mixed model via the investigation of functional random effects. Bayesian thresholded modeling for integrating brain node and network predictors. Bipartite interference and air pollution transport: estimating health effects of power plant interventions. Recurrent events modeling based on a reflected Brownian motion with application to hypoglycemia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1