Airway stenosis: classification, pathogenesis, and clinical management

IF 10.7 Q1 MEDICINE, RESEARCH & EXPERIMENTAL MedComm Pub Date : 2025-01-26 DOI:10.1002/mco2.70076
Pengwei Zhao, Zheng Jiang, Xuexin Li, Mailudan Ainiwaer, Leyu Li, Dejuan Wang, Lixiao Fan, Fei Chen, Jun Liu
{"title":"Airway stenosis: classification, pathogenesis, and clinical management","authors":"Pengwei Zhao,&nbsp;Zheng Jiang,&nbsp;Xuexin Li,&nbsp;Mailudan Ainiwaer,&nbsp;Leyu Li,&nbsp;Dejuan Wang,&nbsp;Lixiao Fan,&nbsp;Fei Chen,&nbsp;Jun Liu","doi":"10.1002/mco2.70076","DOIUrl":null,"url":null,"abstract":"<p>Airway stenosis (AS) is a fibroinflammatory disease characterized by abnormal activation of fibroblasts and excessive synthesis of extracellular matrix, which has puzzled many doctors despite its relatively low prevalence. Traditional treatment such as endoscopic surgery, open surgery, and adjuvant therapy have many disadvantages and are limited in the treatment of patients with recurrent AS. Therefore, it is urgent to reveal the pathogenesis of AS and accelerate its clinical transformation. Based on the discovered pathogenesis, including fibrosis, inflammation, epithelial–mesenchymal transition, metabolic reprogramming, microbiome, genetic susceptibility, and other mechanisms, researchers have developed a series of treatments, such as drug therapy, gene therapy, stem cell therapy, growth factor therapy, protein therapy, and photodynamic therapy. This review introduces the classification of AS, explores the existing pathogenesis and preclinical treatments developed based on the pathogenesis, and finally summarizes the current clinical management. In addition, the prospect of exploring the interaction between different types of cells and between microorganisms and cells to identify the intersection of multiple mechanisms based on single-cell RNA sequencing, 16S rRNA gene sequencing and shotgun metagenomic sequencing is worth looking forward to.</p>","PeriodicalId":94133,"journal":{"name":"MedComm","volume":"6 2","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769711/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedComm","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mco2.70076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Airway stenosis (AS) is a fibroinflammatory disease characterized by abnormal activation of fibroblasts and excessive synthesis of extracellular matrix, which has puzzled many doctors despite its relatively low prevalence. Traditional treatment such as endoscopic surgery, open surgery, and adjuvant therapy have many disadvantages and are limited in the treatment of patients with recurrent AS. Therefore, it is urgent to reveal the pathogenesis of AS and accelerate its clinical transformation. Based on the discovered pathogenesis, including fibrosis, inflammation, epithelial–mesenchymal transition, metabolic reprogramming, microbiome, genetic susceptibility, and other mechanisms, researchers have developed a series of treatments, such as drug therapy, gene therapy, stem cell therapy, growth factor therapy, protein therapy, and photodynamic therapy. This review introduces the classification of AS, explores the existing pathogenesis and preclinical treatments developed based on the pathogenesis, and finally summarizes the current clinical management. In addition, the prospect of exploring the interaction between different types of cells and between microorganisms and cells to identify the intersection of multiple mechanisms based on single-cell RNA sequencing, 16S rRNA gene sequencing and shotgun metagenomic sequencing is worth looking forward to.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
Swimming Exercise Pretreatment Attenuates Postoperative Delirium-Like Behavior in Type 2 Diabetic Rats by Enhancing Mitochondrial Biogenesis Through Activation of SIRT2 Deacetylation Mitigating Early Phosphatidylserine Exposure in a Tmem30a-Dependent Way Ameliorates Neuronal Damages After Ischemic Stroke A Single-Nucleus Transcriptomic Atlas Reveals Cellular and Genetic Characteristics of Alzheimer's-Like Pathology in Aging Tree Shrews RETRACTION: ENKUR Recruits FBXW7 to Ubiquitinate and Degrade MYH9 and Further Suppress MYH9-Induced Deubiquitination of β-Catenin to Block Gastric Cancer Metastasis Depletion of Acetyl-CoA Carboxylase 1 Facilitates Epithelial-Mesenchymal Transition in Prostate Cancer Cells by Activating the MAPK/ERK Pathway
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1