MUTUAL: Towards Holistic Sensing and Inference in the Operating Room.

Julien Quarez, Yang Li, Hassna Irzan, Matthew Elliot, Oscar MacCormac, James Knigth, Martin Huber, Toktam Mahmoodi, Prokar Dasgupta, Sebastien Ourselin, Nicholas Raison, Jonathan Shapey, Alejandro Granados
{"title":"MUTUAL: Towards Holistic Sensing and Inference in the Operating Room.","authors":"Julien Quarez, Yang Li, Hassna Irzan, Matthew Elliot, Oscar MacCormac, James Knigth, Martin Huber, Toktam Mahmoodi, Prokar Dasgupta, Sebastien Ourselin, Nicholas Raison, Jonathan Shapey, Alejandro Granados","doi":"10.1007/978-3-031-77610-6_17","DOIUrl":null,"url":null,"abstract":"<p><p>Embodied AI (E-AI) in the form of intelligent surgical robotics and other agents is calling for data platforms to facilitate its development and deployment. In this work, we present a cross-platform multimodal data recording and streaming software, MUTUAL, successfully deployed on two clinical studies, along with its ROS 2 distributed adaptation, MUTUAL-ROS 2. We describe and compare the two implementations of MUTUAL through their recording performance under different settings. MUTUAL offers robust recording performance at target configurations for multiple modalities, including video, audio, and live expert commentary. While this recording performance is not matched by MUTUAL-ROS 2, we demonstrate its advantages related to real-time streaming capabilities for AI inference and more horizontal scalability, key aspects for E-AI systems in the operating room. Our findings demonstrate that the baseline MUTUAL is well-suited for data curation and offline analysis, whereas MUTUAL-ROS 2, should match the recording reliability of the baseline system under a fully distributed manner where modalities are handled independently by edge computing devices. These insights are critical for advancing the integration of E-AI in surgical practice, ensuring that data infrastructure can support both robust recording and real-time processing needs.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":" ","pages":"178-188"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7617325/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-77610-6_17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Embodied AI (E-AI) in the form of intelligent surgical robotics and other agents is calling for data platforms to facilitate its development and deployment. In this work, we present a cross-platform multimodal data recording and streaming software, MUTUAL, successfully deployed on two clinical studies, along with its ROS 2 distributed adaptation, MUTUAL-ROS 2. We describe and compare the two implementations of MUTUAL through their recording performance under different settings. MUTUAL offers robust recording performance at target configurations for multiple modalities, including video, audio, and live expert commentary. While this recording performance is not matched by MUTUAL-ROS 2, we demonstrate its advantages related to real-time streaming capabilities for AI inference and more horizontal scalability, key aspects for E-AI systems in the operating room. Our findings demonstrate that the baseline MUTUAL is well-suited for data curation and offline analysis, whereas MUTUAL-ROS 2, should match the recording reliability of the baseline system under a fully distributed manner where modalities are handled independently by edge computing devices. These insights are critical for advancing the integration of E-AI in surgical practice, ensuring that data infrastructure can support both robust recording and real-time processing needs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
互助:在手术室中实现整体感知和推理。
智能手术机器人和其他代理形式的嵌入式人工智能(E-AI)需要数据平台来促进其发展和部署。在这项工作中,我们介绍了一款跨平台多模态数据记录和流软件 MUTUAL,该软件已在两项临床研究中成功部署,同时还介绍了其 ROS 2 分布式适配软件 MUTUAL-ROS2。 我们通过不同设置下的记录性能来描述和比较 MUTUAL 的两种实现方式。MUTUAL 在多种模式的目标配置下提供了强大的记录性能,包括视频、音频和现场专家评论。虽然 MUTUAL-ROS 2 的录制性能无法与 MUTUAL-ROS 2 相提并论,但我们展示了它在人工智能推理的实时流功能和更多横向扩展性方面的优势,这些都是手术室中电子人工智能系统的关键所在。我们的研究结果表明,基线 MUTUAL 非常适合数据整理和离线分析,而 MUTUAL-ROS 2 在完全分布式的情况下应与基线系统的记录可靠性相匹配,在这种情况下,各种模式均由边缘计算设备独立处理。这些见解对于推进电子人工智能在外科实践中的整合至关重要,可确保数据基础设施同时支持强大的记录和实时处理需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MUTUAL: Towards Holistic Sensing and Inference in the Operating Room. Zoom Pattern Signatures for Fetal Ultrasound Structures. Self-guided Knowledge-Injected Graph Neural Network for Alzheimer's Diseases. Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation. Attention-Enhanced Fusion of Structural and Functional MRI for Analyzing HIV-Associated Asymptomatic Neurocognitive Impairment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1