Xiaohuan Lyu, Eduardo Lalla-Ruiz, Frederik Schulte
{"title":"The collaborative berth allocation problem with row-generation algorithms for stable cost allocations","authors":"Xiaohuan Lyu, Eduardo Lalla-Ruiz, Frederik Schulte","doi":"10.1016/j.ejor.2024.12.048","DOIUrl":null,"url":null,"abstract":"Recent supply chain disruptions and crisis response policies (e.g., the COVID-19 pandemic and the Red Sea crisis) have highlighted the role of container terminals as crucial and scarce resources in the global economy. To tackle these challenges, the industry increasingly aims for advanced operational collaboration among multiple stakeholders, as demonstrated by the ambitions of the recently founded Gemini alliance. Nonetheless, collaborative planning models often disregard the requirements and incentives of stakeholders or simply solve idealized small instances. Motivated by the above, we design novel and effective collaboration mechanisms among terminal operators that share the resources (berths and quay cranes). We first define the collaborative berth allocation problem and propose a mixed integer linear programming (MILP) model to minimize the total cost of all terminals, referred to as the coalitional costs. We adopt the core and the nucleolus concepts from cooperative game theory to allocate the coalitional costs such that stakeholders have stable incentives to collaborate. To obtain solutions for realistic instance sizes, we propose two exact row-generation-based core and nucleolus algorithms that are versatile and can be used for various combinatorial optimization problems. To the best of our knowledge, the proposed row-generation approach for the nucleolus is the first of its kind for combinatorial optimization problems. Extensive experiments demonstrate that the collaborative berth allocation approach achieves up to 28.44% of cost savings, increasing the solution space in disruptive situations, while the proposed core and nucleolus solutions guarantee the collaboration incentives for individual terminals.","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"48 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1016/j.ejor.2024.12.048","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Recent supply chain disruptions and crisis response policies (e.g., the COVID-19 pandemic and the Red Sea crisis) have highlighted the role of container terminals as crucial and scarce resources in the global economy. To tackle these challenges, the industry increasingly aims for advanced operational collaboration among multiple stakeholders, as demonstrated by the ambitions of the recently founded Gemini alliance. Nonetheless, collaborative planning models often disregard the requirements and incentives of stakeholders or simply solve idealized small instances. Motivated by the above, we design novel and effective collaboration mechanisms among terminal operators that share the resources (berths and quay cranes). We first define the collaborative berth allocation problem and propose a mixed integer linear programming (MILP) model to minimize the total cost of all terminals, referred to as the coalitional costs. We adopt the core and the nucleolus concepts from cooperative game theory to allocate the coalitional costs such that stakeholders have stable incentives to collaborate. To obtain solutions for realistic instance sizes, we propose two exact row-generation-based core and nucleolus algorithms that are versatile and can be used for various combinatorial optimization problems. To the best of our knowledge, the proposed row-generation approach for the nucleolus is the first of its kind for combinatorial optimization problems. Extensive experiments demonstrate that the collaborative berth allocation approach achieves up to 28.44% of cost savings, increasing the solution space in disruptive situations, while the proposed core and nucleolus solutions guarantee the collaboration incentives for individual terminals.
期刊介绍:
The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.