Efficient privacy-preserving ML for IoT: Cluster-based split federated learning scheme for non-IID data

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Journal of Network and Computer Applications Pub Date : 2025-01-17 DOI:10.1016/j.jnca.2025.104105
Mohamad Arafeh , Mohamad Wazzeh , Hani Sami , Hakima Ould-Slimane , Chamseddine Talhi , Azzam Mourad , Hadi Otrok
{"title":"Efficient privacy-preserving ML for IoT: Cluster-based split federated learning scheme for non-IID data","authors":"Mohamad Arafeh ,&nbsp;Mohamad Wazzeh ,&nbsp;Hani Sami ,&nbsp;Hakima Ould-Slimane ,&nbsp;Chamseddine Talhi ,&nbsp;Azzam Mourad ,&nbsp;Hadi Otrok","doi":"10.1016/j.jnca.2025.104105","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose a solution to address the challenges of varying client resource capabilities in the IoT environment when using the SplitFed architecture for training models without compromising user privacy. Federated Learning (FL) and Split Learning (SL) are technologies designed to maintain privacy in distributed machine learning training. While FL generally offers faster training, it requires clients to train the entire neural network model, which may not be feasible for resource-limited IoT devices. Additionally, FL’s performance is heavily impacted by client data distribution and struggles with non-Independent and Identically Distributed (non-IID) data. In parallel, SL offloads part of the training to a server, enabling weak devices to participate by training only portions of the model. However, SL performs slower due to forced synchronization between the server and clients. Combining FL and SL can mitigate each approach’s limitations but also introduce new challenges. For instance, integrating FL’s parallelism into SL brings issues such as non-IID data and stragglers, where faster devices must wait for slower ones to complete their tasks. To address these challenges, we propose a novel two-stage clustering scheme: the first stage addresses non-IID clients by grouping them based on their weights, while the second stage clusters clients with similar capabilities to ensure that faster clients do not have to wait excessively for slower ones. To further optimize our approach, we develop a multi-objective client selection solution, which is solved using a genetic algorithm to select the most suitable clients for each training round based on their model contribution and resource availability. Our experimental evaluations demonstrate the superiority of our approach, achieving higher accuracy in less time compared to several benchmarks.</div></div>","PeriodicalId":54784,"journal":{"name":"Journal of Network and Computer Applications","volume":"236 ","pages":"Article 104105"},"PeriodicalIF":7.7000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Computer Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1084804525000025","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a solution to address the challenges of varying client resource capabilities in the IoT environment when using the SplitFed architecture for training models without compromising user privacy. Federated Learning (FL) and Split Learning (SL) are technologies designed to maintain privacy in distributed machine learning training. While FL generally offers faster training, it requires clients to train the entire neural network model, which may not be feasible for resource-limited IoT devices. Additionally, FL’s performance is heavily impacted by client data distribution and struggles with non-Independent and Identically Distributed (non-IID) data. In parallel, SL offloads part of the training to a server, enabling weak devices to participate by training only portions of the model. However, SL performs slower due to forced synchronization between the server and clients. Combining FL and SL can mitigate each approach’s limitations but also introduce new challenges. For instance, integrating FL’s parallelism into SL brings issues such as non-IID data and stragglers, where faster devices must wait for slower ones to complete their tasks. To address these challenges, we propose a novel two-stage clustering scheme: the first stage addresses non-IID clients by grouping them based on their weights, while the second stage clusters clients with similar capabilities to ensure that faster clients do not have to wait excessively for slower ones. To further optimize our approach, we develop a multi-objective client selection solution, which is solved using a genetic algorithm to select the most suitable clients for each training round based on their model contribution and resource availability. Our experimental evaluations demonstrate the superiority of our approach, achieving higher accuracy in less time compared to several benchmarks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Network and Computer Applications
Journal of Network and Computer Applications 工程技术-计算机:跨学科应用
CiteScore
21.50
自引率
3.40%
发文量
142
审稿时长
37 days
期刊介绍: The Journal of Network and Computer Applications welcomes research contributions, surveys, and notes in all areas relating to computer networks and applications thereof. Sample topics include new design techniques, interesting or novel applications, components or standards; computer networks with tools such as WWW; emerging standards for internet protocols; Wireless networks; Mobile Computing; emerging computing models such as cloud computing, grid computing; applications of networked systems for remote collaboration and telemedicine, etc. The journal is abstracted and indexed in Scopus, Engineering Index, Web of Science, Science Citation Index Expanded and INSPEC.
期刊最新文献
Editorial Board DAPNEML: Disease-diet associations prediction in a NEtwork using a machine learning based approach A Comprehensive Survey of Smart Contracts Vulnerability Detection Tools: Techniques and Methodologies MuLPP: A multi-level privacy preserving for blockchain-based bilateral P2P energy trading PRISM: PSI and Voronoi diagram based Automated Exposure Notification with location privacy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1