“Open Sourcing” Workflow and Machine Learning Approaches for Attributing Obsidian Artifacts to Their Volcanic Origins: A Feasibility Study from the South Caucasus

IF 3.2 1区 历史学 Q1 ANTHROPOLOGY Journal of Archaeological Method and Theory Pub Date : 2025-01-27 DOI:10.1007/s10816-025-09695-8
Pavol Hnila, Ellery Frahm, Alessandra Gilibert, Arsen Bobokhyan
{"title":"“Open Sourcing” Workflow and Machine Learning Approaches for Attributing Obsidian Artifacts to Their Volcanic Origins: A Feasibility Study from the South Caucasus","authors":"Pavol Hnila, Ellery Frahm, Alessandra Gilibert, Arsen Bobokhyan","doi":"10.1007/s10816-025-09695-8","DOIUrl":null,"url":null,"abstract":"<p>Traditionally, reliable obsidian sourcing requires expensive calibration standards and extensive geological reference collections as well as experience with statistical processing. In the South Caucasus — one of the most obsidian-rich regions on the planet — this combination of requirements has often restricted sourcing studies because few projects have geological reference collections that cover all known obsidian sources. To test an alternative approach, we conducted “open sourcing” using portable X-ray fluorescence (pXRF) analyses of geological specimens with three key changes to the conventional method: (1) commercially available calibration standards were replaced with a loanable Peabody-Yale Reference Obsidians (PYRO) set, (2) a comprehensive geological reference collection was replaced with a published dataset of consensus values (Frahm, 2023a, 2023b), and (3) processing in statistical packages was replaced with two semiautomated machine-learning workflows available online. For comparison, we used classification by-eye with JMP 17.2 statistical software. Furthermore, we propose a new method to evaluate calibrations, which streamlines comparisons and which we refer to as a symmetric difference ratio (SDR). The results of this feasibility study demonstrate that this “open sourcing” workflow is reliable, yet currently only in combination with classification by-eye. When the consensus values were combined with the machine-learning solutions, the classification results were unsatisfactory. The most encouraging aspect of our alternative “open sourcing” workflow is that it enables correct source identification without physically measuring reference collections, therefore surmounting an obstacle that, until now, has severely limited archaeological research. We anticipate that rapid developments in machine-learning will also soon improve the workflow.</p>","PeriodicalId":47725,"journal":{"name":"Journal of Archaeological Method and Theory","volume":"12 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Archaeological Method and Theory","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1007/s10816-025-09695-8","RegionNum":1,"RegionCategory":"历史学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANTHROPOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Traditionally, reliable obsidian sourcing requires expensive calibration standards and extensive geological reference collections as well as experience with statistical processing. In the South Caucasus — one of the most obsidian-rich regions on the planet — this combination of requirements has often restricted sourcing studies because few projects have geological reference collections that cover all known obsidian sources. To test an alternative approach, we conducted “open sourcing” using portable X-ray fluorescence (pXRF) analyses of geological specimens with three key changes to the conventional method: (1) commercially available calibration standards were replaced with a loanable Peabody-Yale Reference Obsidians (PYRO) set, (2) a comprehensive geological reference collection was replaced with a published dataset of consensus values (Frahm, 2023a, 2023b), and (3) processing in statistical packages was replaced with two semiautomated machine-learning workflows available online. For comparison, we used classification by-eye with JMP 17.2 statistical software. Furthermore, we propose a new method to evaluate calibrations, which streamlines comparisons and which we refer to as a symmetric difference ratio (SDR). The results of this feasibility study demonstrate that this “open sourcing” workflow is reliable, yet currently only in combination with classification by-eye. When the consensus values were combined with the machine-learning solutions, the classification results were unsatisfactory. The most encouraging aspect of our alternative “open sourcing” workflow is that it enables correct source identification without physically measuring reference collections, therefore surmounting an obstacle that, until now, has severely limited archaeological research. We anticipate that rapid developments in machine-learning will also soon improve the workflow.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.30
自引率
8.70%
发文量
43
期刊介绍: The Journal of Archaeological Method and Theory, the leading journal in its field,  presents original articles that address method- or theory-focused issues of current archaeological interest and represent significant explorations on the cutting edge of the discipline.   The journal also welcomes topical syntheses that critically assess and integrate research on a specific subject in archaeological method or theory, as well as examinations of the history of archaeology.    Written by experts, the articles benefit an international audience of archaeologists, students of archaeology, and practitioners of closely related disciplines.  Specific topics covered in recent issues include:  the use of nitche construction theory in archaeology,  new developments in the use of soil chemistry in archaeological interpretation, and a model for the prehistoric development of clothing.  The Journal''s distinguished Editorial Board includes archaeologists with worldwide archaeological knowledge (the Americas, Asia and the Pacific, Europe, and Africa), and expertise in a wide range of methodological and theoretical issues.  Rated ''A'' in the European Reference Index for the Humanities (ERIH) Journal of Archaeological Method and Theory is rated ''A'' in the ERIH, a new reference index that aims to help evenly access the scientific quality of Humanities research output. For more information visit: http://www.esf.org/research-areas/humanities/activities/research-infrastructures.html Rated ''A'' in the Australian Research Council Humanities and Creative Arts Journal List.  For more information, visit: http://www.arc.gov.au/era/journal_list_dev.htm
期刊最新文献
Methodological Challenges to Tracking Zea mays (Maize) Historical Pathways Through Macrobotanical, Microbotanical, and Stable Isotope Evidence: Maize’s Adoption and Consumption by Precontact Populations in the North American Midcontinent “Open Sourcing” Workflow and Machine Learning Approaches for Attributing Obsidian Artifacts to Their Volcanic Origins: A Feasibility Study from the South Caucasus Comparing Summed Probability Distributions of Shoreline and Radiocarbon Dates from the Mesolithic Skagerrak Coast of Norway “A Network of Mutualities of Being”: Socio-material Archaeological Networks and Biological Ties at Çatalhöyük The Trade Theory of Money: External Exchange and the Origins of Money
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1