A tree crown edge-aware clipping algorithm for airborne LiDAR point clouds

IF 7.5 1区 地球科学 Q1 Earth and Planetary Sciences International Journal of Applied Earth Observation and Geoinformation Pub Date : 2025-01-27 DOI:10.1016/j.jag.2025.104381
Shangshu Cai, Yong Pang
{"title":"A tree crown edge-aware clipping algorithm for airborne LiDAR point clouds","authors":"Shangshu Cai, Yong Pang","doi":"10.1016/j.jag.2025.104381","DOIUrl":null,"url":null,"abstract":"Dividing a forest point cloud dataset into tiles is a common practice in point cloud processing (e.g., individual tree segmentation), aimed at addressing memory constraints and optimizing processing efficiency. Existing methods typically utilize automatic regular clipping (e.g., rectangular clipping), which tends to result in splitting tree crowns along the cutting lines. To preserve the completeness of tree crowns within predefined clipping boundaries (e.g., rectangles), we develop a tree crown edge-aware (E-A) point cloud clipping algorithm, named E-A algorithm. Firstly, the crown edge and distance features are enhanced and quantified using mathematical morphology and nearest neighbor pixel methods. Then, these two features are linearly weighted and integrated for cutting line detection. Finally, the optimal cutting lines are detected by exploring a set of edges with the minimum sum of integrated feature values. E-A algorithm was tested with airborne LiDAR point clouds collected from China’s Saihanba Forest Farm, comparing it against regular clipping methods. The results indicate that E-A algorithm can automatically and effectively emphasize preserving tree crown completeness within predefined clipping boundaries. It reduces crown fragmentation errors by 73.29% on average and maintains an average area difference of 6.42% compared to regular clippings. This algorithm provides a crucial tool for forest point cloud applications.","PeriodicalId":50341,"journal":{"name":"International Journal of Applied Earth Observation and Geoinformation","volume":"119 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Earth Observation and Geoinformation","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jag.2025.104381","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Dividing a forest point cloud dataset into tiles is a common practice in point cloud processing (e.g., individual tree segmentation), aimed at addressing memory constraints and optimizing processing efficiency. Existing methods typically utilize automatic regular clipping (e.g., rectangular clipping), which tends to result in splitting tree crowns along the cutting lines. To preserve the completeness of tree crowns within predefined clipping boundaries (e.g., rectangles), we develop a tree crown edge-aware (E-A) point cloud clipping algorithm, named E-A algorithm. Firstly, the crown edge and distance features are enhanced and quantified using mathematical morphology and nearest neighbor pixel methods. Then, these two features are linearly weighted and integrated for cutting line detection. Finally, the optimal cutting lines are detected by exploring a set of edges with the minimum sum of integrated feature values. E-A algorithm was tested with airborne LiDAR point clouds collected from China’s Saihanba Forest Farm, comparing it against regular clipping methods. The results indicate that E-A algorithm can automatically and effectively emphasize preserving tree crown completeness within predefined clipping boundaries. It reduces crown fragmentation errors by 73.29% on average and maintains an average area difference of 6.42% compared to regular clippings. This algorithm provides a crucial tool for forest point cloud applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.20
自引率
8.00%
发文量
49
审稿时长
7.2 months
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
期刊最新文献
Change detection of slow-moving landslide with multi-source SBAS-InSAR and Light-U2Net CUG-STCN: A seabed topography classification framework based on knowledge graph-guided vision mamba network A tree crown edge-aware clipping algorithm for airborne LiDAR point clouds Reduced sediment load and vegetation restoration leading to clearer water color in the Yellow River: Evidence from 38 years of Landsat observations Empirical methods to determine surface air temperature from satellite-retrieved data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1