Jingya Yu, Zizheng Song, Qi Qi, Xiaobin Hui, Kai Qi, Yiyuan Ma, Feiyang Chen, Qi Meng, Renjie Li, Lyuchao Zhuang, Kang Cheung Chan, Zibin Chen, Bao Yu Xia, Zheng-Long Xu
{"title":"Sabatier Principle Inspired Bifunctional Alloy Interface for Stable and High-Depth Discharging Zinc Metal Anodes","authors":"Jingya Yu, Zizheng Song, Qi Qi, Xiaobin Hui, Kai Qi, Yiyuan Ma, Feiyang Chen, Qi Meng, Renjie Li, Lyuchao Zhuang, Kang Cheung Chan, Zibin Chen, Bao Yu Xia, Zheng-Long Xu","doi":"10.1002/anie.202423236","DOIUrl":null,"url":null,"abstract":"Achieving stable Zn anodes is essential for advancing high-performance Zn metal batteries. Here, we propose a Sabatier principle inspired bifunctional transition-metal (TM) interface to enable homogeneous Zn dissolution during discharging and dendrite-free Zn deposition during charging. Among various TM-coated Zn (TM@Zn) electrodes, Cu@Zn exhibits the highest reversibility and structural stability, attributed to the optimal interaction between Cu and Zn. The heteroatomic interaction-dependent electrochemical performance parallels the Sabatier principle. Morphological analyses reveal that bare Zn anodes display detrimental etching pits during stripping, which is different from the uniform dissolution for Cu@Zn electrodes. During subsequent plating, the conductive interface serves as a secondary current collector for uniform Zn deposition in Cu@Zn, thus demonstrating a bifunctional nature. Atomic observations disclose the working mechanisms of this interface as a gradual phase transition from Cu to CuZn5 during cycling. The Cu@Zn anodes exhibit an ultralong cycling lifespan of over 8000 h at a low current of 1 mA cm-2 and over 250 h at a high depth of discharge of 80%. They also demonstrate practical feasibility by maintaining 88.7% capacity retention after 1000 cycles in Cu@Zn||VO2 full cells. This work provides new insights into the Sabatier chemistry inspired bifunctional layers for Zn metal battery system.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"47 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202423236","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Achieving stable Zn anodes is essential for advancing high-performance Zn metal batteries. Here, we propose a Sabatier principle inspired bifunctional transition-metal (TM) interface to enable homogeneous Zn dissolution during discharging and dendrite-free Zn deposition during charging. Among various TM-coated Zn (TM@Zn) electrodes, Cu@Zn exhibits the highest reversibility and structural stability, attributed to the optimal interaction between Cu and Zn. The heteroatomic interaction-dependent electrochemical performance parallels the Sabatier principle. Morphological analyses reveal that bare Zn anodes display detrimental etching pits during stripping, which is different from the uniform dissolution for Cu@Zn electrodes. During subsequent plating, the conductive interface serves as a secondary current collector for uniform Zn deposition in Cu@Zn, thus demonstrating a bifunctional nature. Atomic observations disclose the working mechanisms of this interface as a gradual phase transition from Cu to CuZn5 during cycling. The Cu@Zn anodes exhibit an ultralong cycling lifespan of over 8000 h at a low current of 1 mA cm-2 and over 250 h at a high depth of discharge of 80%. They also demonstrate practical feasibility by maintaining 88.7% capacity retention after 1000 cycles in Cu@Zn||VO2 full cells. This work provides new insights into the Sabatier chemistry inspired bifunctional layers for Zn metal battery system.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.