Pressure-Driven Structural Transition in the Charge Density Wave Material SrAl4

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry C Pub Date : 2025-01-27 DOI:10.1021/acs.jpcc.4c08594
Shihu Zhang, Yi-Chi Li, Yang Chen, Yonghui Zhou, Shuyang Wang, Ying Zhou, Min Zhang, Chao An, Yong Fang, Jian Zhou, Zhaorong Yang
{"title":"Pressure-Driven Structural Transition in the Charge Density Wave Material SrAl4","authors":"Shihu Zhang, Yi-Chi Li, Yang Chen, Yonghui Zhou, Shuyang Wang, Ying Zhou, Min Zhang, Chao An, Yong Fang, Jian Zhou, Zhaorong Yang","doi":"10.1021/acs.jpcc.4c08594","DOIUrl":null,"url":null,"abstract":"SrAl<sub>4</sub>, which possesses a BaAl<sub>4</sub>-type tetragonal structure (<i>I</i>4/<i>mmm</i>, No. 139), exhibits both a charge density wave (CDW) order and a topological semimetal state at ambient pressure. Here, the electronic and structural properties of SrAl<sub>4</sub> were systematically investigated with pressure up to 49.4 GPa through electrical transport, X-ray diffraction (XRD), and Raman scattering measurements, as well as theoretical calculations. With increasing pressure, the <i>T</i><sub>CDW</sub> is monotonically decreased, and the CDW state is eventually suppressed to zero temperature at ∼10 GPa based on the linear extrapolation. At ambient pressure, three Raman vibrational modes are identified, which are assigned to <i>B</i><sub>1<i>g</i></sub> (230.9 cm<sup>–1</sup>), <i></i><span style=\"color: inherit;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 1.539em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 1.232em; height: 0px; font-size: 122%;\"><span style=\"position: absolute; clip: rect(1.181em, 1001.23em, 2.769em, -999.997em); top: -2.2em; left: 0em;\"><span><span><span style=\"display: inline-block; position: relative; width: 1.232em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.179em, 1000.77em, 4.152em, -999.997em); top: -3.993em; left: 0em;\"><span><span style=\"font-family: MathJax_Math-italic;\">E<span style=\"display: inline-block; overflow: hidden; height: 1px; width: 0.054em;\"></span></span></span><span style=\"display: inline-block; width: 0px; height: 3.998em;\"></span></span><span style=\"position: absolute; clip: rect(3.384em, 1000.41em, 4.152em, -999.997em); top: -4.403em; left: 0.822em;\"><span><span style=\"font-size: 70.7%; font-family: MathJax_Main;\">2</span></span><span style=\"display: inline-block; width: 0px; height: 3.998em;\"></span></span><span style=\"position: absolute; clip: rect(3.537em, 1000.41em, 4.306em, -999.997em); top: -3.737em; left: 0.72em;\"><span><span style=\"font-size: 70.7%; font-family: MathJax_Math-italic;\">g<span style=\"display: inline-block; overflow: hidden; height: 1px; width: 0.003em;\"></span></span></span><span style=\"display: inline-block; width: 0px; height: 3.998em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.205em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.559em; border-left: 0px solid; width: 0px; height: 1.691em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mrow><mi>E</mi></mrow><mrow><mi>g</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span></span><script type=\"math/mml\"><math display=\"inline\"><msubsup><mrow><mi>E</mi></mrow><mrow><mi>g</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></script> (302.7 cm<sup>–1</sup>), and <i>A</i><sub>1<i>g</i></sub> (357.4 cm<sup>–1</sup>), respectively. Upon compression to <i>P</i><sub>C</sub> = 19.0 GPa, the original Raman modes all disappear, and simultaneously, four new peaks emerge, which indicate the occurrence of a structural transition. Combined with XRD and theoretical calculations, the <i>C</i>2/<i>m</i> phase is believed to be the most plausible crystal structure of SrAl<sub>4</sub> above <i>P</i><sub>C</sub>. In addition, the residual resistance ratio as well as magnetoresistance shows abrupt changes across <i>P</i><sub>C</sub>, which further manifest the structural transition (<i>I</i>4/<i>mmm</i> → <i>C</i>2/<i>m</i>) of SrAl<sub>4</sub> under high pressure.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"39 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c08594","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

SrAl4, which possesses a BaAl4-type tetragonal structure (I4/mmm, No. 139), exhibits both a charge density wave (CDW) order and a topological semimetal state at ambient pressure. Here, the electronic and structural properties of SrAl4 were systematically investigated with pressure up to 49.4 GPa through electrical transport, X-ray diffraction (XRD), and Raman scattering measurements, as well as theoretical calculations. With increasing pressure, the TCDW is monotonically decreased, and the CDW state is eventually suppressed to zero temperature at ∼10 GPa based on the linear extrapolation. At ambient pressure, three Raman vibrational modes are identified, which are assigned to B1g (230.9 cm–1), Eg2 (302.7 cm–1), and A1g (357.4 cm–1), respectively. Upon compression to PC = 19.0 GPa, the original Raman modes all disappear, and simultaneously, four new peaks emerge, which indicate the occurrence of a structural transition. Combined with XRD and theoretical calculations, the C2/m phase is believed to be the most plausible crystal structure of SrAl4 above PC. In addition, the residual resistance ratio as well as magnetoresistance shows abrupt changes across PC, which further manifest the structural transition (I4/mmmC2/m) of SrAl4 under high pressure.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电荷密度波材料 SrAl4 中的压力驱动结构转变
SrAl4具有baal4型四方结构(I4/mmm, No. 139),在环境压力下呈现电荷密度波(CDW)有序和拓扑半金属态。本文通过电输运、x射线衍射(XRD)和拉曼散射测量以及理论计算,系统地研究了SrAl4在高达49.4 GPa压力下的电子和结构特性。随着压力的增加,CDW单调降低,根据线性外推,CDW状态最终在~ 10 GPa时被抑制到零。在环境压力下,确定了三种拉曼振动模式,分别分配给B1g (230.9 cm-1), E2gEg2Eg2 (302.7 cm-1)和A1g (357.4 cm-1)。压缩到PC = 19.0 GPa时,原有的拉曼模式全部消失,同时出现4个新的拉曼峰,表明结构转变的发生。结合XRD和理论计算,认为C2/m相是PC以上SrAl4最合理的晶体结构。此外,残余电阻比和磁阻在PC上呈现突变,进一步体现了SrAl4在高压下的结构转变(I4/mmm→C2/m)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
Ab Initio Study of ZnO (101̅0) Surface Decorated with Terthiophene-Cyanoacrylate Dye for DSSCs Dual Regulation of Zr-Doped LLTO and Gr-Doped Cathodes: Synergistic Effect of Microstructure on the Cycling Performance of All-Solid-State Lithium Batteries Preparation of a Novel Semiconductor BiCuOS and Its Application in Long-Term Stable Mode-Locked Fiber Lasers Bayesian Reconstruct of Particle Concentration and Size Distributions of Gold Nanorods from Spectral Transmittance Issue Editorial Masthead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1