Biomechanical and Functional Features of the Carrier Erythrocytes Prolonging Circulation Time of Biotherapeutic Targeted to Glycophorin A.

IF 4 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS Bioconjugate Chemistry Pub Date : 2025-01-27 DOI:10.1021/acs.bioconjchem.4c00522
Alina D Peshkova, Taylor V Brysgel, Parth Mody, Jia Nong, Zhicheng Wang, Jacob W Myerson, Rustem I Litvinov, John W Weisel, Jacob S Brenner, Patrick M Glassman, Oscar A Marcos-Contreras, Vladimir R Muzykantov
{"title":"Biomechanical and Functional Features of the Carrier Erythrocytes Prolonging Circulation Time of Biotherapeutic Targeted to Glycophorin A.","authors":"Alina D Peshkova, Taylor V Brysgel, Parth Mody, Jia Nong, Zhicheng Wang, Jacob W Myerson, Rustem I Litvinov, John W Weisel, Jacob S Brenner, Patrick M Glassman, Oscar A Marcos-Contreras, Vladimir R Muzykantov","doi":"10.1021/acs.bioconjchem.4c00522","DOIUrl":null,"url":null,"abstract":"<p><p>Red blood cells (RBCs) serve as natural transporters and can be modified to enhance the pharmacokinetics and pharmacodynamics of a protein cargo. Affinity targeting of Factor IX (FIX) to the RBC membrane is a promising approach to improve the (pro)enzyme's pharmacokinetics. For RBC targeting, purified human FIX was conjugated to the anti-mouse glycophorin A monoclonal antibody Ter119. The goal of this study was to characterize the activity of the FIX-Ter119 conjugate and efficacy of its loading on RBCs, as well as to investigate the biodistribution, pharmacokinetics, and various biological properties of the loaded RBCs. Mouse RBCs were incubated with the Ter119-FIX conjugate, where adding 10,000 molecules per RBC resulted in 37% binding (4K/RBC), and 50,000 molecules per RBC resulted in 34% binding (17K/RBC). The pharmacokinetics (PK) profile showed that more than 90% of the Ter119-FIX conjugate was associated with RBCs and circulated stably bound to the RBCs for 24 h, increasing the area under the PK curve 7.6 times vs free FIX. Ter119-FIX loaded RBCs have specific procoagulant FIXa activity, including promotion of thrombin generation and acceleration of clotting in FIX-deficient plasma. Morphological characterization shows that Ter119-FIX-loaded RBCs undergo a shape change, with an increased fraction of echinocytes and spheroidal RBCs. Ektacytometry and electron microscopy assessment of RBC compressibility reveal a dose-dependent reduction in the deformability of RBCs loaded with Ter119-FIX. In conclusion, RBCs loaded with Ter119-FIX have the potential to serve as prohemostatic agents, but their reduced deformability warrants further engineering of Ter119-FIX to improve the safety profile.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.4c00522","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Red blood cells (RBCs) serve as natural transporters and can be modified to enhance the pharmacokinetics and pharmacodynamics of a protein cargo. Affinity targeting of Factor IX (FIX) to the RBC membrane is a promising approach to improve the (pro)enzyme's pharmacokinetics. For RBC targeting, purified human FIX was conjugated to the anti-mouse glycophorin A monoclonal antibody Ter119. The goal of this study was to characterize the activity of the FIX-Ter119 conjugate and efficacy of its loading on RBCs, as well as to investigate the biodistribution, pharmacokinetics, and various biological properties of the loaded RBCs. Mouse RBCs were incubated with the Ter119-FIX conjugate, where adding 10,000 molecules per RBC resulted in 37% binding (4K/RBC), and 50,000 molecules per RBC resulted in 34% binding (17K/RBC). The pharmacokinetics (PK) profile showed that more than 90% of the Ter119-FIX conjugate was associated with RBCs and circulated stably bound to the RBCs for 24 h, increasing the area under the PK curve 7.6 times vs free FIX. Ter119-FIX loaded RBCs have specific procoagulant FIXa activity, including promotion of thrombin generation and acceleration of clotting in FIX-deficient plasma. Morphological characterization shows that Ter119-FIX-loaded RBCs undergo a shape change, with an increased fraction of echinocytes and spheroidal RBCs. Ektacytometry and electron microscopy assessment of RBC compressibility reveal a dose-dependent reduction in the deformability of RBCs loaded with Ter119-FIX. In conclusion, RBCs loaded with Ter119-FIX have the potential to serve as prohemostatic agents, but their reduced deformability warrants further engineering of Ter119-FIX to improve the safety profile.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioconjugate Chemistry
Bioconjugate Chemistry 生物-化学综合
CiteScore
9.00
自引率
2.10%
发文量
236
审稿时长
1.4 months
期刊介绍: Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.
期刊最新文献
Nanoscale Effects in the Room-Temperature UV-Visible Photoluminescence from Silica Particles and Its Cancer Cell Imaging. A Unique Prodrug Targeting the Prostate-Specific Membrane Antigen for the Delivery of Monomethyl Auristatin E. Biomechanical and Functional Features of the Carrier Erythrocytes Prolonging Circulation Time of Biotherapeutic Targeted to Glycophorin A. Effect of Lipidation on the Structure, Oligomerization, and Aggregation of Glucagon-like Peptide 1. Modular Synthesis of Anti-HER2 Dual-Drug Antibody-Drug Conjugates Demonstrating Improved Toxicity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1