O-GlcNAcylation regulates tyrosine hydroxylase serine 40 phosphorylation and L-DOPA levels.

IF 5 2区 生物学 Q2 CELL BIOLOGY American journal of physiology. Cell physiology Pub Date : 2025-01-27 DOI:10.1152/ajpcell.00215.2024
Bruno da Costa Rodrigues, Miguel Clodomiro Dos Santos Lucena, Anna Carolina Rego Costa, Isadora de Araújo Oliveira, Mariana Thaumaturgo, Yolanda Paes-Colli, Danielle Beckman, Sergio T Ferreira, Fernando Garcia de Mello, Ricardo Augusto De Melo Reis, Adriane Regina Todeschini, Wagner Barbosa Dias
{"title":"O-GlcNAcylation regulates tyrosine hydroxylase serine 40 phosphorylation and L-DOPA levels.","authors":"Bruno da Costa Rodrigues, Miguel Clodomiro Dos Santos Lucena, Anna Carolina Rego Costa, Isadora de Araújo Oliveira, Mariana Thaumaturgo, Yolanda Paes-Colli, Danielle Beckman, Sergio T Ferreira, Fernando Garcia de Mello, Ricardo Augusto De Melo Reis, Adriane Regina Todeschini, Wagner Barbosa Dias","doi":"10.1152/ajpcell.00215.2024","DOIUrl":null,"url":null,"abstract":"<p><p>O-GlcNAcylation is a post-translational modification characterized by the covalent attachment of a single moiety of GlcNAc on serine/threonine residues in proteins. Tyrosine hydroxylase (TH), the rate-limiting step enzyme in the catecholamine synthesis pathway and responsible for production of the dopamine precursor, L-DOPA, has its activity regulated by phosphorylation. Here, we show an inverse feedback mechanism between O-GlcNAcylation and phosphorylation of TH at serine 40 (TH pSer40). First, we showed that, during PC12 cells neuritogenesis, TH O-GlcNAcylation decreases concurrently with the increase of pSer40. In addition, an increase in O-GlcNAcylation induces a decrease in TH pSer40 only in undifferentiated PC12 cells, while the decrease in O-GlcNAcylation leads to an increase in TH pSer40 levels in both undifferentiated and differentiated PC12 cells. We further show that this feedback culminates on the regulation of L-DOPA intracellular levels. Interestingly, it is noteworthy that decreasing O-GlcNAcylation is much more effective on TH pSer40 regulation than increasing its levels. Finally, <i>ex vivo</i> analysis confirmed the upregulation of TH pSer40 when O-GlcNAcylation levels are reduced in dopaminergic neurons from C57Bl/6 mice. Taken together, these findings demonstrate a dynamic control of L-DOPA production by a molecular crosstalk between O-GlcNAcylation and phosphorylation at Ser40 in tyrosine hydroxylase.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00215.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

O-GlcNAcylation is a post-translational modification characterized by the covalent attachment of a single moiety of GlcNAc on serine/threonine residues in proteins. Tyrosine hydroxylase (TH), the rate-limiting step enzyme in the catecholamine synthesis pathway and responsible for production of the dopamine precursor, L-DOPA, has its activity regulated by phosphorylation. Here, we show an inverse feedback mechanism between O-GlcNAcylation and phosphorylation of TH at serine 40 (TH pSer40). First, we showed that, during PC12 cells neuritogenesis, TH O-GlcNAcylation decreases concurrently with the increase of pSer40. In addition, an increase in O-GlcNAcylation induces a decrease in TH pSer40 only in undifferentiated PC12 cells, while the decrease in O-GlcNAcylation leads to an increase in TH pSer40 levels in both undifferentiated and differentiated PC12 cells. We further show that this feedback culminates on the regulation of L-DOPA intracellular levels. Interestingly, it is noteworthy that decreasing O-GlcNAcylation is much more effective on TH pSer40 regulation than increasing its levels. Finally, ex vivo analysis confirmed the upregulation of TH pSer40 when O-GlcNAcylation levels are reduced in dopaminergic neurons from C57Bl/6 mice. Taken together, these findings demonstrate a dynamic control of L-DOPA production by a molecular crosstalk between O-GlcNAcylation and phosphorylation at Ser40 in tyrosine hydroxylase.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
1.80%
发文量
252
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.
期刊最新文献
Metabolic T-cell phenotypes - from bioenergetics to function. Role of TGF-β/SMAD/YAP/TAZ signaling in skeletal muscle fibrosis. Microbiota protect against frailty, loss of skeletal muscle, and maintain inflammatory tone during aging in mice. An Endogenous Aryl Hydrocarbon Receptor Ligand Dysregulates Endothelial Functions, Transcriptome, and Phosphoproteome. Effects of oral γ-aminobutyric acid intake on muscle regeneration in diabetic mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1