Hannah Haile, Pavan S Upadhyayula, Esma Karlovich, Michael B Sisti, Brian J A Gill, Laura E Donovan
{"title":"Management of asynchronous multifocal adult glioblastoma with loss of BRAF<sup>V600E</sup> -mutant clonality: a case report.","authors":"Hannah Haile, Pavan S Upadhyayula, Esma Karlovich, Michael B Sisti, Brian J A Gill, Laura E Donovan","doi":"10.1186/s40478-024-01894-w","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma (GBM) classification involves a combination of histological and molecular signatures including IDH1/2 mutation, TERT promoter mutation, and EGFR amplification. Non-canonical mutations such as BRAF<sup>V600E</sup>, found in 1-2% of GBMs, activate the MEK-ERK signaling pathway. This mutation can be targeted by small molecule inhibitors, offering therapeutic potential for GBM. In this case report, we describe the management of a 67-year-old male with BRAF<sup>V600E</sup> -mutant GBM, who experienced both local clonal and distant non-clonal BRAF<sup>V600E</sup> -mutant recurrences. Initial treatment involved surgical resection followed by radiotherapy and temozolomide (TMZ). Subsequent recurrences were managed with re-resection and dabrafenib/trametinib combination therapy. Notably, a new, non-clonal BRAF<sup>V600E</sup> -negative tumor developed in a distant location, highlighting the challenge of clonal evolution and resistance in GBM management. The patient's disease ultimately progressed despite multiple lines of therapy, including targeted inhibition. Identifying mechanisms of resistance and tailoring flexible treatment approaches are essential for advancing outcomes in BRAF<sup>V600E</sup> -mutant GBM. This case emphasizes the value of molecular profiling in personalizing treatment for patients with multifocal disease. The evolving nature of these tumors requires persistent clinical monitoring and treatment adjustments based on tissue diagnostics.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"13 1","pages":"18"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40478-024-01894-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Glioblastoma (GBM) classification involves a combination of histological and molecular signatures including IDH1/2 mutation, TERT promoter mutation, and EGFR amplification. Non-canonical mutations such as BRAFV600E, found in 1-2% of GBMs, activate the MEK-ERK signaling pathway. This mutation can be targeted by small molecule inhibitors, offering therapeutic potential for GBM. In this case report, we describe the management of a 67-year-old male with BRAFV600E -mutant GBM, who experienced both local clonal and distant non-clonal BRAFV600E -mutant recurrences. Initial treatment involved surgical resection followed by radiotherapy and temozolomide (TMZ). Subsequent recurrences were managed with re-resection and dabrafenib/trametinib combination therapy. Notably, a new, non-clonal BRAFV600E -negative tumor developed in a distant location, highlighting the challenge of clonal evolution and resistance in GBM management. The patient's disease ultimately progressed despite multiple lines of therapy, including targeted inhibition. Identifying mechanisms of resistance and tailoring flexible treatment approaches are essential for advancing outcomes in BRAFV600E -mutant GBM. This case emphasizes the value of molecular profiling in personalizing treatment for patients with multifocal disease. The evolving nature of these tumors requires persistent clinical monitoring and treatment adjustments based on tissue diagnostics.
期刊介绍:
"Acta Neuropathologica Communications (ANC)" is a peer-reviewed journal that specializes in the rapid publication of research articles focused on the mechanisms underlying neurological diseases. The journal emphasizes the use of molecular, cellular, and morphological techniques applied to experimental or human tissues to investigate the pathogenesis of neurological disorders.
ANC is committed to a fast-track publication process, aiming to publish accepted manuscripts within two months of submission. This expedited timeline is designed to ensure that the latest findings in neuroscience and pathology are disseminated quickly to the scientific community, fostering rapid advancements in the field of neurology and neuroscience. The journal's focus on cutting-edge research and its swift publication schedule make it a valuable resource for researchers, clinicians, and other professionals interested in the study and treatment of neurological conditions.