Diet-Microbiome-ENS connection: Impact of the Cafeteria Diet.

IF 3.9 3区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY American journal of physiology. Gastrointestinal and liver physiology Pub Date : 2025-01-28 DOI:10.1152/ajpgi.00391.2024
Arun Balasubramaniam, Shanthi Srinivasan
{"title":"Diet-Microbiome-ENS connection: Impact of the Cafeteria Diet.","authors":"Arun Balasubramaniam, Shanthi Srinivasan","doi":"10.1152/ajpgi.00391.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The interplay between diet-induced obesity and gastrointestinal dysfunction is an evolving area of research with far-reaching implications for understanding the gutbrain axis interactions. In their study, Ramírez-Maldonado et al. employ a cafeteria (CAF) diet model to investigate the effects on gut microbiota, enteric nervous system (ENS) integrity and function, and gastrointestinal motility in mice. Their work provides notable insights while also presenting opportunities for further exploration. The findings highlight early shifts in gut microbiota composition, notably increased <i>Clostridia</i> and <i>Proteobacteria</i> populations, and their association with ENS remodeling and motility impairment. This innovative use of a CAF diet strengthens the relevance of the model to real-world dietary patterns. Future studies will determine the mechanisms linking these microbial changes to neuronal dysfunction, particularly in terms of excitability deficits. The longitudinal approach is a commendable aspect of the study, yet certain dimensions, such as sex-specific responses and long-term outcomes, are underexplored. Further emphasis on these factors could provide a more nuanced understanding of the dietary effects on gastrointestinal health. While inflammation is identified as a mediator, more in-depth analysis of the pathways involved would help substantiate its role in ENS remodeling. Overall, this study makes a valuable contribution to the field, offering a solid foundation for future research. Expanding on the mechanistic insights and addressing the outlined gaps could further the translational relevance of these findings in tackling obesity-related gastrointestinal disorders.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Gastrointestinal and liver physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpgi.00391.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The interplay between diet-induced obesity and gastrointestinal dysfunction is an evolving area of research with far-reaching implications for understanding the gutbrain axis interactions. In their study, Ramírez-Maldonado et al. employ a cafeteria (CAF) diet model to investigate the effects on gut microbiota, enteric nervous system (ENS) integrity and function, and gastrointestinal motility in mice. Their work provides notable insights while also presenting opportunities for further exploration. The findings highlight early shifts in gut microbiota composition, notably increased Clostridia and Proteobacteria populations, and their association with ENS remodeling and motility impairment. This innovative use of a CAF diet strengthens the relevance of the model to real-world dietary patterns. Future studies will determine the mechanisms linking these microbial changes to neuronal dysfunction, particularly in terms of excitability deficits. The longitudinal approach is a commendable aspect of the study, yet certain dimensions, such as sex-specific responses and long-term outcomes, are underexplored. Further emphasis on these factors could provide a more nuanced understanding of the dietary effects on gastrointestinal health. While inflammation is identified as a mediator, more in-depth analysis of the pathways involved would help substantiate its role in ENS remodeling. Overall, this study makes a valuable contribution to the field, offering a solid foundation for future research. Expanding on the mechanistic insights and addressing the outlined gaps could further the translational relevance of these findings in tackling obesity-related gastrointestinal disorders.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.40
自引率
2.20%
发文量
104
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Gastrointestinal and Liver Physiology publishes original articles pertaining to all aspects of research involving normal or abnormal function of the gastrointestinal tract, hepatobiliary system, and pancreas. Authors are encouraged to submit manuscripts dealing with growth and development, digestion, secretion, absorption, metabolism, and motility relative to these organs, as well as research reports dealing with immune and inflammatory processes and with neural, endocrine, and circulatory control mechanisms that affect these organs.
期刊最新文献
In silico integrative scRNA analysis of human colonic epithelium indicates four tuft cell subtypes. Gut microbiota of patients insusceptible to olanzapine-induced fatty liver disease relieves hepatic steatosis in rats. Deleterious impacts of Western diet on jejunum function and health are reversible. Augmenting anti-inflammatory macrophage function in colitis: a neuroimmune mechanism to drive intestinal wound repair. Local tissue response to a C-X-C motif chemokine ligand 12 therapy for fecal incontinence in a rabbit model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1