An NGS approach for the identification of precise homoeologous recombination sites between A and C genomes in Brassica genus.

IF 2 4区 农林科学 Q2 AGRONOMY Breeding Science Pub Date : 2024-09-01 Epub Date: 2024-08-29 DOI:10.1270/jsbbs.23090
Tenta Segawa, Riki Kumazawa, Muluneh Tamiru-Oli, Tetsuyuki Hanano, Makishi Hara, Minami Nishikawa, Sorachi Saiga, Marina Takata, Masaki Ito, Tomohiro Imamura, Hiroki Takagi
{"title":"An NGS approach for the identification of precise homoeologous recombination sites between A and C genomes in <i>Brassica</i> genus.","authors":"Tenta Segawa, Riki Kumazawa, Muluneh Tamiru-Oli, Tetsuyuki Hanano, Makishi Hara, Minami Nishikawa, Sorachi Saiga, Marina Takata, Masaki Ito, Tomohiro Imamura, Hiroki Takagi","doi":"10.1270/jsbbs.23090","DOIUrl":null,"url":null,"abstract":"<p><p>The introgression of heterologous genomes through interspecific hybridization offers a great opportunity to expand the gene pool of crops, thereby broadening the traits that can be targeted for improvement. The introgression of C genomic regions carrying desirable traits from <i>Brassica napus</i> (AACC) into the diploid <i>B. rapa</i> (AA) via homoeologous recombination (HR) has been commonly used. However, the precise identification of HR sites remains a significant challenge, limiting the practical application of genome introgression via HR in breeding programs. Here, we developed an indicator named 'Dosage-score' from the coverage depth of next-generation sequencing reads. Then, Dosage-score analysis applied to both in BC<sub>1</sub>F<sub>1</sub> individuals obtained by backcrossing <i>B. rapa</i> to F<sub>1</sub> progeny (<i>B. rapa</i> × <i>B. napus</i>) and in the parental lines, and successfully identified the precise HR sites resulting from F<sub>1</sub> meiosis as well as those that were native in the parental <i>B. napus</i> genome. Additionally, we introgressed the C6 segment from HR identified by Dosage-score analysis into <i>B. rapa</i> genome background, revealing gene expression on the added segment without noticeable phenotypic change. The identification of HR by Dosage-score analysis will contribute to the expansion of the gene pool for breeding by introgression of heterologous genomes in <i>Brassica</i> crops.</p>","PeriodicalId":9258,"journal":{"name":"Breeding Science","volume":"74 4","pages":"324-336"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769586/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breeding Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1270/jsbbs.23090","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

The introgression of heterologous genomes through interspecific hybridization offers a great opportunity to expand the gene pool of crops, thereby broadening the traits that can be targeted for improvement. The introgression of C genomic regions carrying desirable traits from Brassica napus (AACC) into the diploid B. rapa (AA) via homoeologous recombination (HR) has been commonly used. However, the precise identification of HR sites remains a significant challenge, limiting the practical application of genome introgression via HR in breeding programs. Here, we developed an indicator named 'Dosage-score' from the coverage depth of next-generation sequencing reads. Then, Dosage-score analysis applied to both in BC1F1 individuals obtained by backcrossing B. rapa to F1 progeny (B. rapa × B. napus) and in the parental lines, and successfully identified the precise HR sites resulting from F1 meiosis as well as those that were native in the parental B. napus genome. Additionally, we introgressed the C6 segment from HR identified by Dosage-score analysis into B. rapa genome background, revealing gene expression on the added segment without noticeable phenotypic change. The identification of HR by Dosage-score analysis will contribute to the expansion of the gene pool for breeding by introgression of heterologous genomes in Brassica crops.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Breeding Science
Breeding Science 农林科学-农艺学
CiteScore
4.90
自引率
4.20%
发文量
37
审稿时长
1.5 months
期刊介绍: Breeding Science is published by the Japanese Society of Breeding. Breeding Science publishes research papers, notes and reviews related to breeding. Research Papers are standard original articles. Notes report new cultivars, breeding lines, germplasms, genetic stocks, mapping populations, database, software, and techniques significant and useful for breeding. Reviews summarize recent and historical events related breeding. Manuscripts should be submitted by corresponding author. Corresponding author must have obtained permission from all authors prior to submission. Correspondence, proofs, and charges of excess page and color figures should be handled by the corresponding author.
期刊最新文献
Breeding of a new malting barley variety 'Satuiku 5 go' for Hokkaido exhibiting improved grain yield and malting quality. Characterization of QTLs for diameter in panicle neck and substitution mapping of qDPN5/qVBN5.2 and qVBN6 in rice (Oryza sativa L.). A new cultivar 'Hisui no Kaori' opens up a fragrant type of lettuce (Lactuca sativa L.). An NGS approach for the identification of precise homoeologous recombination sites between A and C genomes in Brassica genus. Screening Brassica rapa for broad-spectrum resistance to Turnip mosaic virus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1