Nitroxoline evidence amoebicidal activity against Acanthamoeba castellanii through DNA damage and the stress response pathways

Lijun Chen , Wei Han , Wenwen Jing , Meng Feng , Qingtong Zhou , Xunjia Cheng
{"title":"Nitroxoline evidence amoebicidal activity against Acanthamoeba castellanii through DNA damage and the stress response pathways","authors":"Lijun Chen ,&nbsp;Wei Han ,&nbsp;Wenwen Jing ,&nbsp;Meng Feng ,&nbsp;Qingtong Zhou ,&nbsp;Xunjia Cheng","doi":"10.1016/j.ijpddr.2025.100578","DOIUrl":null,"url":null,"abstract":"<div><div><em>Acanthamoeba castellanii</em> is a widespread unicellular eukaryote found in diverse environments, including tap water, soil, and swimming pools. It is responsible for severe infections, such as <em>Acanthamoeba</em> keratitis and granulomatous amebic encephalitis, particularly in individuals with immunocompromisation. The ability of protozoans to form dormant and persistent cysts complicates treatment, as current therapies are ineffective against cyst stages and suffer from poor specificity and side effects. Nitroxoline, a quinoline derivative with well-established antibacterial, antifungal, and antiviral properties, is a promising therapeutic candidate. This study aimed to elucidate cellular signalling events that counteract the effects of nitroxoline. In this study, nitroxoline significantly reduced the viability of <em>A</em>. <em>castellanii</em> trophozoites in a dose- and time-dependent manner, inducing morphological changes and apoptosis. Transcriptomic analysis revealed substantial alterations in gene expression, including enrichment of metabolic pathways, DNA damage responses, and iron ion binding. Nitroxoline treatment upregulated genes involved in DNA repair and oxidative stress response while regulating genes in the methionine and cysteine cycles. It also decreased the mitochondrial membrane potential, H₂S production, and total iron amount in <em>A</em>. <em>castellanii</em>. Bioinformatic analyses and molecular docking studies suggest direct interactions between nitroxoline and several <em>A</em>. <em>castellanii</em> proteins. Our research provides a comprehensive molecular map of the response of <em>A</em>. <em>castellanii</em> to nitroxoline, revealing significant changes in gene expression related to the stress response and metabolic pathways. These findings underscore the potential of nitroxoline as a potent anti-<em>Acanthamoeba</em> agent, offering new insights into its mechanism of action and paving the way for effective combinational therapeutic strategies.</div></div>","PeriodicalId":13775,"journal":{"name":"International Journal for Parasitology: Drugs and Drug Resistance","volume":"27 ","pages":"Article 100578"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762632/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Parasitology: Drugs and Drug Resistance","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211320725000016","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Acanthamoeba castellanii is a widespread unicellular eukaryote found in diverse environments, including tap water, soil, and swimming pools. It is responsible for severe infections, such as Acanthamoeba keratitis and granulomatous amebic encephalitis, particularly in individuals with immunocompromisation. The ability of protozoans to form dormant and persistent cysts complicates treatment, as current therapies are ineffective against cyst stages and suffer from poor specificity and side effects. Nitroxoline, a quinoline derivative with well-established antibacterial, antifungal, and antiviral properties, is a promising therapeutic candidate. This study aimed to elucidate cellular signalling events that counteract the effects of nitroxoline. In this study, nitroxoline significantly reduced the viability of A. castellanii trophozoites in a dose- and time-dependent manner, inducing morphological changes and apoptosis. Transcriptomic analysis revealed substantial alterations in gene expression, including enrichment of metabolic pathways, DNA damage responses, and iron ion binding. Nitroxoline treatment upregulated genes involved in DNA repair and oxidative stress response while regulating genes in the methionine and cysteine cycles. It also decreased the mitochondrial membrane potential, H₂S production, and total iron amount in A. castellanii. Bioinformatic analyses and molecular docking studies suggest direct interactions between nitroxoline and several A. castellanii proteins. Our research provides a comprehensive molecular map of the response of A. castellanii to nitroxoline, revealing significant changes in gene expression related to the stress response and metabolic pathways. These findings underscore the potential of nitroxoline as a potent anti-Acanthamoeba agent, offering new insights into its mechanism of action and paving the way for effective combinational therapeutic strategies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.90
自引率
7.50%
发文量
31
审稿时长
48 days
期刊介绍: The International Journal for Parasitology – Drugs and Drug Resistance is one of a series of specialist, open access journals launched by the International Journal for Parasitology. It publishes the results of original research in the area of anti-parasite drug identification, development and evaluation, and parasite drug resistance. The journal also covers research into natural products as anti-parasitic agents, and bioactive parasite products. Studies can be aimed at unicellular or multicellular parasites of human or veterinary importance.
期刊最新文献
Culturing of Giardia lamblia under microaerobic conditions can impact metronidazole susceptibility by inducing increased expression of antioxidant enzymes Selective activity of Tabebuia avellanedae against Giardia duodenalis infecting organoid-derived human gastrointestinal epithelia Combining the zebrafish embryo developmental toxicity assay (ZEDTA) with hemoglobin staining to accelerate the research of novel antimalarial drugs for pregnant women Investigation of the threonine metabolism of Echinococcus multilocularis: The threonine dehydrogenase as a potential drug target in alveolar echinococcosis 3′-deoxytubercidin: A potent therapeutic candidate for the treatment of Surra and Dourine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1