Identifying Key Biomarkers Related to Immune Response in the Progression of Diabetic Kidney Disease: Mendelian Randomization Combined With Comprehensive Transcriptomics and Single-Cell Sequencing Analysis.

IF 4.2 2区 医学 Q2 IMMUNOLOGY Journal of Inflammation Research Pub Date : 2025-01-22 eCollection Date: 2025-01-01 DOI:10.2147/JIR.S482047
Miao Hu, Yi Deng, Yujie Bai, Jiayan Zhang, Xiahong Shen, Lei Shen, Ling Zhou
{"title":"Identifying Key Biomarkers Related to Immune Response in the Progression of Diabetic Kidney Disease: Mendelian Randomization Combined With Comprehensive Transcriptomics and Single-Cell Sequencing Analysis.","authors":"Miao Hu, Yi Deng, Yujie Bai, Jiayan Zhang, Xiahong Shen, Lei Shen, Ling Zhou","doi":"10.2147/JIR.S482047","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Renal failure related death caused by diabetic kidney disease (DKD) is an inevitable outcome for most patients. This study aimed to identify the critical genes involved in the onset and progression of DKD and to explore potential therapeutic targets of DKD.</p><p><strong>Methods: </strong>We conducted a batch of protein quantitative trait loci (pQTL) Mendelian randomization analysis to obtain a group of proteins with causal relationships with DKD and then identified key proteins through colocalization analysis to determine correlations between variant proteins and disease outcomes. Subsequently, the specific mechanisms of key regulatory genes involved in disease progression were analyzed through transcriptome and single-cell analysis. Finally, we validated the mRNA expression of five key genes in the DKD mice model using reverse transcription quantitative PCR (RT-qPCR).</p><p><strong>Results: </strong>Five characteristic genes, known as protein kinase B beta (AKT2), interleukin-2 receptor beta (IL2RB), neurexin 3(NRXN3), slit homolog 3(SLIT3), and TATA box binding protein like protein 1 (TBPL1), demonstrated causal relationships with DKD. These key genes are associated with the infiltration of immune cells, and they are related to the regulatory genes associated with immunity. In addition, we also conducted gene enrichment analysis to explore the complex network of potential signaling pathways that may regulate these key genes. Finally, we identified the effectiveness and reliability of these selected key genes through RT-qPCR in the DKD mice model.</p><p><strong>Conclusion: </strong>Our results indicated that the AKT2, IL2RB, NRXN3, SLIT3, and TBPL1 genes are closely related to DKD, which may be useful in the diagnosis and therapy of DKD.</p>","PeriodicalId":16107,"journal":{"name":"Journal of Inflammation Research","volume":"18 ","pages":"949-972"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769850/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inflammation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JIR.S482047","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Renal failure related death caused by diabetic kidney disease (DKD) is an inevitable outcome for most patients. This study aimed to identify the critical genes involved in the onset and progression of DKD and to explore potential therapeutic targets of DKD.

Methods: We conducted a batch of protein quantitative trait loci (pQTL) Mendelian randomization analysis to obtain a group of proteins with causal relationships with DKD and then identified key proteins through colocalization analysis to determine correlations between variant proteins and disease outcomes. Subsequently, the specific mechanisms of key regulatory genes involved in disease progression were analyzed through transcriptome and single-cell analysis. Finally, we validated the mRNA expression of five key genes in the DKD mice model using reverse transcription quantitative PCR (RT-qPCR).

Results: Five characteristic genes, known as protein kinase B beta (AKT2), interleukin-2 receptor beta (IL2RB), neurexin 3(NRXN3), slit homolog 3(SLIT3), and TATA box binding protein like protein 1 (TBPL1), demonstrated causal relationships with DKD. These key genes are associated with the infiltration of immune cells, and they are related to the regulatory genes associated with immunity. In addition, we also conducted gene enrichment analysis to explore the complex network of potential signaling pathways that may regulate these key genes. Finally, we identified the effectiveness and reliability of these selected key genes through RT-qPCR in the DKD mice model.

Conclusion: Our results indicated that the AKT2, IL2RB, NRXN3, SLIT3, and TBPL1 genes are closely related to DKD, which may be useful in the diagnosis and therapy of DKD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Inflammation Research
Journal of Inflammation Research Immunology and Microbiology-Immunology
CiteScore
6.10
自引率
2.20%
发文量
658
审稿时长
16 weeks
期刊介绍: An international, peer-reviewed, open access, online journal that welcomes laboratory and clinical findings on the molecular basis, cell biology and pharmacology of inflammation.
期刊最新文献
Beyond Tumors: The Pivotal Role of TRIM Proteins in Chronic Non-Tumor Lung Diseases. GPX3 as a Novel and Potential Therapeutic Target in the Shared Molecular Mechanisms of Traumatic Brain Injury and Parkinson's Disease. Quzhou Aurantii Fructus Flavonoids Ameliorate Inflammatory Responses, Intestinal Barrier Dysfunction in DSS-Induced Colitis by Modulating PI3K/AKT Signaling Pathway and Gut Microbiome. Rat Model of Cystic Neutrophilic Granulomatous Mastitis by Corynebacterium Kroppenstedtii. RECK as a Potential Crucial Molecule for the Targeted Treatment of Sepsis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1