Evaluating the effectiveness of prompt engineering for knowledge graph question answering.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Frontiers in Artificial Intelligence Pub Date : 2025-01-13 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1454258
Catherine Kosten, Farhad Nooralahzadeh, Kurt Stockinger
{"title":"Evaluating the effectiveness of prompt engineering for knowledge graph question answering.","authors":"Catherine Kosten, Farhad Nooralahzadeh, Kurt Stockinger","doi":"10.3389/frai.2024.1454258","DOIUrl":null,"url":null,"abstract":"<p><p>Many different methods for prompting large language models have been developed since the emergence of OpenAI's ChatGPT in November 2022. In this work, we evaluate six different few-shot prompting methods. The first set of experiments evaluates three frameworks that focus on the quantity or type of shots in a prompt: a baseline method with a simple prompt and a small number of shots, random few-shot prompting with 10, 20, and 30 shots, and similarity-based few-shot prompting. The second set of experiments target optimizing the prompt or enhancing shots through Large Language Model (LLM)-generated explanations, using three prompting frameworks: Explain then Translate, Question Decomposition Meaning Representation, and Optimization by Prompting. We evaluate these six prompting methods on the newly created Spider4SPARQL benchmark, as it is the most complex SPARQL-based Knowledge Graph Question Answering (KGQA) benchmark to date. Across the various prompting frameworks used, the commercial model is unable to achieve a score over 51%, indicating that KGQA, especially for complex queries, with multiple hops, set operations and filters remains a challenging task for LLMs. Our experiments find that the most successful prompting framework for KGQA is a simple prompt combined with an ontology and five random shots.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1454258"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770024/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1454258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Many different methods for prompting large language models have been developed since the emergence of OpenAI's ChatGPT in November 2022. In this work, we evaluate six different few-shot prompting methods. The first set of experiments evaluates three frameworks that focus on the quantity or type of shots in a prompt: a baseline method with a simple prompt and a small number of shots, random few-shot prompting with 10, 20, and 30 shots, and similarity-based few-shot prompting. The second set of experiments target optimizing the prompt or enhancing shots through Large Language Model (LLM)-generated explanations, using three prompting frameworks: Explain then Translate, Question Decomposition Meaning Representation, and Optimization by Prompting. We evaluate these six prompting methods on the newly created Spider4SPARQL benchmark, as it is the most complex SPARQL-based Knowledge Graph Question Answering (KGQA) benchmark to date. Across the various prompting frameworks used, the commercial model is unable to achieve a score over 51%, indicating that KGQA, especially for complex queries, with multiple hops, set operations and filters remains a challenging task for LLMs. Our experiments find that the most successful prompting framework for KGQA is a simple prompt combined with an ontology and five random shots.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自 2022 年 11 月 OpenAI 的 ChatGPT 出现以来,已经开发出许多不同的大型语言模型提示方法。在这项工作中,我们评估了六种不同的少量提示方法。第一组实验评估了三种侧重于提示中镜头数量或类型的框架:具有简单提示和少量镜头的基线方法、具有 10、20 和 30 个镜头的随机少量镜头提示,以及基于相似性的少量镜头提示。第二组实验使用三种提示框架,通过大语言模型(LLM)生成的解释来优化提示或增强镜头:先解释后翻译、问题分解意义表示和提示优化。我们在新创建的 Spider4SPARQL 基准上评估了这六种提示方法,因为它是迄今为止最复杂的基于 SPARQL 的知识图谱问题解答(KGQA)基准。在所使用的各种提示框架中,商业模型无法获得 51% 以上的分数,这表明 KGQA,尤其是复杂查询、多跳、集合操作和过滤器,对于 LLM 来说仍然是一项具有挑战性的任务。我们的实验发现,KGQA 最成功的提示框架是将简单提示与本体和五个随机镜头相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
期刊最新文献
Examining the integration of artificial intelligence in supply chain management from Industry 4.0 to 6.0: a systematic literature review. The technology acceptance model and adopter type analysis in the context of artificial intelligence. An analysis of artificial intelligence automation in digital music streaming platforms for improving consumer subscription responses: a review. Prediction of outpatient rehabilitation patient preferences and optimization of graded diagnosis and treatment based on XGBoost machine learning algorithm. SineKAN: Kolmogorov-Arnold Networks using sinusoidal activation functions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1