Inhibition of Kv1.3 channel restrains macrophage M2 polarization and ameliorates renal fibrosis via regulating STAT6 phosphorylation

IF 9.1 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pharmacological research Pub Date : 2025-01-25 DOI:10.1016/j.phrs.2025.107623
Yanshan Chen , Yuanxing Zhi , Hailin Zhong , Liang Ma , Xinpei Gu , Yijing Cai , Jingjing Huang , Xin Yi , Xiaoyan Wu , Ken Kin Lam Yung , Pingzheng Zhou
{"title":"Inhibition of Kv1.3 channel restrains macrophage M2 polarization and ameliorates renal fibrosis via regulating STAT6 phosphorylation","authors":"Yanshan Chen ,&nbsp;Yuanxing Zhi ,&nbsp;Hailin Zhong ,&nbsp;Liang Ma ,&nbsp;Xinpei Gu ,&nbsp;Yijing Cai ,&nbsp;Jingjing Huang ,&nbsp;Xin Yi ,&nbsp;Xiaoyan Wu ,&nbsp;Ken Kin Lam Yung ,&nbsp;Pingzheng Zhou","doi":"10.1016/j.phrs.2025.107623","DOIUrl":null,"url":null,"abstract":"<div><div>Macrophages play crucial roles in regulating both homeostatic and inflammatory responses, with classical activated (M1) and alternatively activated (M2) subsets defined by the surrounding micro-environment. Renal fibrosis, developed from persistent inflammation, is worsened by M2 macrophages, yet the precise mechanisms underlying macrophage M2 polarization remain unclear. In this study, we investigated the role of Kv1.3, one of the primary potassium channels which is expressed in both innate and adaptive immunity, on macrophage M2 polarization and renal fibrosis. Our findings demonstrated that genetic or pharmacological inhibition of Kv1.3 significantly suppressed the expression of M2 markers and STAT6 phosphorylation. Furthermore, pharmacological inhibition of Kv1.3 by PAP-1 attenuated renal inflammation and fibrosis with decreased infiltration of macrophage infiltration and M2 polarization by employing the unilateral ureteral obstruction (UUO) renal fibrosis model. Mechanistically, we revealed that Kv1.3 was required for STAT6 phosphorylation in a mitochondria membrane potential dependent manner. Collectively, this study suggests that Kv1.3 is essential for macrophage M2 polarization and highlights the potential of Kv1.3 blockers as therapeutic agents for renal fibrosis and other M2 polarization-related diseases.</div></div>","PeriodicalId":19918,"journal":{"name":"Pharmacological research","volume":"213 ","pages":"Article 107623"},"PeriodicalIF":9.1000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacological research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1043661825000489","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Macrophages play crucial roles in regulating both homeostatic and inflammatory responses, with classical activated (M1) and alternatively activated (M2) subsets defined by the surrounding micro-environment. Renal fibrosis, developed from persistent inflammation, is worsened by M2 macrophages, yet the precise mechanisms underlying macrophage M2 polarization remain unclear. In this study, we investigated the role of Kv1.3, one of the primary potassium channels which is expressed in both innate and adaptive immunity, on macrophage M2 polarization and renal fibrosis. Our findings demonstrated that genetic or pharmacological inhibition of Kv1.3 significantly suppressed the expression of M2 markers and STAT6 phosphorylation. Furthermore, pharmacological inhibition of Kv1.3 by PAP-1 attenuated renal inflammation and fibrosis with decreased infiltration of macrophage infiltration and M2 polarization by employing the unilateral ureteral obstruction (UUO) renal fibrosis model. Mechanistically, we revealed that Kv1.3 was required for STAT6 phosphorylation in a mitochondria membrane potential dependent manner. Collectively, this study suggests that Kv1.3 is essential for macrophage M2 polarization and highlights the potential of Kv1.3 blockers as therapeutic agents for renal fibrosis and other M2 polarization-related diseases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Pharmacological research
Pharmacological research 医学-药学
CiteScore
18.70
自引率
3.20%
发文量
491
审稿时长
8 days
期刊介绍: Pharmacological Research publishes cutting-edge articles in biomedical sciences to cover a broad range of topics that move the pharmacological field forward. Pharmacological research publishes articles on molecular, biochemical, translational, and clinical research (including clinical trials); it is proud of its rapid publication of accepted papers that comprises a dedicated, fast acceptance and publication track for high profile articles.
期刊最新文献
An in vitro pharmacogenomic approach reveals subtype-specific therapeutic vulnerabilities in atypical teratoid/rhabdoid tumors (AT/RT). Lactobacillus vaginalis alleviates DSS induced colitis by regulating the gut microbiota and increasing the production of 3-indoleacrylic acid. Gut microbiome-derived indole-3-carboxaldehyde regulates stress vulnerability in chronic restraint stress by activating aryl hydrocarbon receptors Quality and composition control of complex TCM preparations through a novel “Herbs-in vivo Compounds-Targets-Pathways” network methodology: The case of Lianhuaqingwen capsules Neuronal PCSK9 regulates cognitive performances via the modulation of ApoER2 synaptic localization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1