{"title":"GDFold2: A fast and parallelizable protein folding environment with freely defined objective functions.","authors":"Tianyu Mi, Nan Xiao, Haipeng Gong","doi":"10.1002/pro.70041","DOIUrl":null,"url":null,"abstract":"<p><p>An important step of mainstream protein structure prediction is to model the 3D protein structure based on the predicted 2D inter-residue geometric information. This folding step has been integrated into a unified neural network to allow end-to-end training in state-of-the-art methods like AlphaFold2, but is separately implemented using the Rosetta folding environment in some traditional methods like trRosetta. Despite the inferiority in prediction accuracy, the conventional approach allows for the sampling of various protein conformations compatible with the predicted geometric constraints, partially capturing the dynamic information. Here, we propose GDFold2, a novel protein folding environment, to address the limitations of Rosetta. On the one hand, GDFold2 is highly computationally efficient, capable of accomplishing multiple folding processes in parallel within the time scale of minutes for generic proteins. On the other hand, GDFold2 supports freely defined objective functions to fulfill diversified optimization requirements. Moreover, we propose a quality assessment (QA) model to provide reliable prediction on the quality of protein structures folded by GDFold2, thus substantially simplifying the selection of structural models. GDFold2 and the QA model could be combined to investigate the transition path between protein conformational states, and the online server is available at https://structpred.life.tsinghua.edu.cn/server_gdfold2.html.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 2","pages":"e70041"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773392/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70041","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
An important step of mainstream protein structure prediction is to model the 3D protein structure based on the predicted 2D inter-residue geometric information. This folding step has been integrated into a unified neural network to allow end-to-end training in state-of-the-art methods like AlphaFold2, but is separately implemented using the Rosetta folding environment in some traditional methods like trRosetta. Despite the inferiority in prediction accuracy, the conventional approach allows for the sampling of various protein conformations compatible with the predicted geometric constraints, partially capturing the dynamic information. Here, we propose GDFold2, a novel protein folding environment, to address the limitations of Rosetta. On the one hand, GDFold2 is highly computationally efficient, capable of accomplishing multiple folding processes in parallel within the time scale of minutes for generic proteins. On the other hand, GDFold2 supports freely defined objective functions to fulfill diversified optimization requirements. Moreover, we propose a quality assessment (QA) model to provide reliable prediction on the quality of protein structures folded by GDFold2, thus substantially simplifying the selection of structural models. GDFold2 and the QA model could be combined to investigate the transition path between protein conformational states, and the online server is available at https://structpred.life.tsinghua.edu.cn/server_gdfold2.html.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).