InterDIA: Interpretable Prediction of Drug-induced Autoimmunity through Ensemble Machine Learning Approaches.

IF 4.8 3区 医学 Q1 PHARMACOLOGY & PHARMACY Toxicology Pub Date : 2025-01-25 DOI:10.1016/j.tox.2025.154064
Lina Huang, Peineng Liu, Xiaojie Huang
{"title":"InterDIA: Interpretable Prediction of Drug-induced Autoimmunity through Ensemble Machine Learning Approaches.","authors":"Lina Huang, Peineng Liu, Xiaojie Huang","doi":"10.1016/j.tox.2025.154064","DOIUrl":null,"url":null,"abstract":"<p><p>Drug-induced autoimmunity (DIA) is a non-IgE immune-related adverse drug reaction that poses substantial challenges in predictive toxicology due to its idiosyncratic nature, complex pathogenesis, and diverse clinical manifestations. To address these challenges, we developed InterDIA, an interpretable machine learning framework for predicting DIA toxicity based on molecular physicochemical properties. Multi-strategy feature selection and advanced ensemble resampling approaches were integrated to enhance prediction accuracy and overcome data imbalance. The optimized Easy Ensemble Classifier achieved robust performance in both 10-fold cross-validation (AUC value of 0.8836 and accuracy of 82.81%) and external validation (AUC value of 0.8930 and accuracy of 85.00%). Paired case studies of hydralazine/phthalazine and procainamide/N-acetylprocainamide demonstrated the model's capacity to discriminate between structurally similar compounds with distinct immunogenic potentials. Mechanistic interpretation through SHAP (SHapley Additive exPlanations) analysis revealed critical physicochemical determinants of DIA, including molecular lipophilicity, partial charge distribution, electronic states, polarizability, and topological features. These molecular signatures were mechanistically linked to key processes in DIA pathogenesis, such as membrane permeability and tissue distribution, metabolic bioactivation susceptibility, immune protein recognition and binding specificity. SHAP dependence plots analysis identified specific threshold values for key molecular features, providing novel insights into structure-toxicity relationships in DIA. To facilitate practical application, we developed an open-access web platform enabling batch prediction with real-time visualization of molecular feature contributions through SHAP waterfall plots. This integrated framework not only advances our mechanistic understanding of DIA pathogenesis from a molecular perspective but also provides a valuable tool for early assessment of autoimmune toxicity risk during drug development.</p>","PeriodicalId":23159,"journal":{"name":"Toxicology","volume":" ","pages":"154064"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tox.2025.154064","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Drug-induced autoimmunity (DIA) is a non-IgE immune-related adverse drug reaction that poses substantial challenges in predictive toxicology due to its idiosyncratic nature, complex pathogenesis, and diverse clinical manifestations. To address these challenges, we developed InterDIA, an interpretable machine learning framework for predicting DIA toxicity based on molecular physicochemical properties. Multi-strategy feature selection and advanced ensemble resampling approaches were integrated to enhance prediction accuracy and overcome data imbalance. The optimized Easy Ensemble Classifier achieved robust performance in both 10-fold cross-validation (AUC value of 0.8836 and accuracy of 82.81%) and external validation (AUC value of 0.8930 and accuracy of 85.00%). Paired case studies of hydralazine/phthalazine and procainamide/N-acetylprocainamide demonstrated the model's capacity to discriminate between structurally similar compounds with distinct immunogenic potentials. Mechanistic interpretation through SHAP (SHapley Additive exPlanations) analysis revealed critical physicochemical determinants of DIA, including molecular lipophilicity, partial charge distribution, electronic states, polarizability, and topological features. These molecular signatures were mechanistically linked to key processes in DIA pathogenesis, such as membrane permeability and tissue distribution, metabolic bioactivation susceptibility, immune protein recognition and binding specificity. SHAP dependence plots analysis identified specific threshold values for key molecular features, providing novel insights into structure-toxicity relationships in DIA. To facilitate practical application, we developed an open-access web platform enabling batch prediction with real-time visualization of molecular feature contributions through SHAP waterfall plots. This integrated framework not only advances our mechanistic understanding of DIA pathogenesis from a molecular perspective but also provides a valuable tool for early assessment of autoimmune toxicity risk during drug development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Toxicology
Toxicology 医学-毒理学
CiteScore
7.80
自引率
4.40%
发文量
222
审稿时长
23 days
期刊介绍: Toxicology is an international, peer-reviewed journal that publishes only the highest quality original scientific research and critical reviews describing hypothesis-based investigations into mechanisms of toxicity associated with exposures to xenobiotic chemicals, particularly as it relates to human health. In this respect "mechanisms" is defined on both the macro (e.g. physiological, biological, kinetic, species, sex, etc.) and molecular (genomic, transcriptomic, metabolic, etc.) scale. Emphasis is placed on findings that identify novel hazards and that can be extrapolated to exposures and mechanisms that are relevant to estimating human risk. Toxicology also publishes brief communications, personal commentaries and opinion articles, as well as concise expert reviews on contemporary topics. All research and review articles published in Toxicology are subject to rigorous peer review. Authors are asked to contact the Editor-in-Chief prior to submitting review articles or commentaries for consideration for publication in Toxicology.
期刊最新文献
Chronic environmental exposure to polystyrene microplastics increases the risk of nonalcoholic fatty liver disease. Assessing the impact of TiO2 nanomaterials on intestinal cells: new evidence for epithelial translocation and potential pro-inflammatory effects. InterDIA: Interpretable Prediction of Drug-induced Autoimmunity through Ensemble Machine Learning Approaches. A preliminary study of combined toxicity and underlying mechanisms of imidacloprid and cadmium coexposure using a multiomics integration approach. Benzene-induced hematotoxicity enhances the self-renewal ability of HSPCs in Mll-Af9 mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1