Prediction of Radiation Therapy Induced Cardiovascular Toxicity from Pretreatment CT Images in Patients with Thoracic Malignancy via an Optimal Biomarker Approach.

IF 3.8 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Academic Radiology Pub Date : 2025-01-26 DOI:10.1016/j.acra.2025.01.012
Mujun Long, Mostafa Alnoury, Jayaram K Udupa, Yubing Tong, Caiyun Wu, Nicholas Poole, Sutirth Mannikeri, Bonnie Ky, Steven J Feigenberg, Jennifer W Zou, Shannon O'Reilly, Drew A Torigian
{"title":"Prediction of Radiation Therapy Induced Cardiovascular Toxicity from Pretreatment CT Images in Patients with Thoracic Malignancy via an Optimal Biomarker Approach.","authors":"Mujun Long, Mostafa Alnoury, Jayaram K Udupa, Yubing Tong, Caiyun Wu, Nicholas Poole, Sutirth Mannikeri, Bonnie Ky, Steven J Feigenberg, Jennifer W Zou, Shannon O'Reilly, Drew A Torigian","doi":"10.1016/j.acra.2025.01.012","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale and objectives: </strong>Cardiovascular toxicity is a well-known complication of thoracic radiation therapy (RT), leading to increased morbidity and mortality, but existing techniques to predict cardiovascular toxicity have limitations. Predictive biomarkers of cardiovascular toxicity may help to maximize patient outcomes.</p><p><strong>Methods: </strong>The machine learning optimal biomarker (OBM) method was employed to predict development of cardiotoxicity (based on serial echocardiographic measurements of left ventricular ejection fraction and longitudinal strain) from computed tomography (CT) images in patients with thoracic malignancy undergoing RT. Manual segmentations of 10 cardiovascular objects of interest were performed on pre-treatment non-contrast-enhanced CT simulation images in 125 patients with thoracic malignancy (41 who developed cardiotoxicity and 84 who did not after RT). 1078 features describing morphology, image intensity, and texture for each of these objects were extracted and the top 5 features among them that were most uncorrelated and showed the best ability to discriminate between cardiotoxicity/ no cardiotoxicity were determined. The best combination among all possible combinations among these 5 features that yielded the highest accuracy of prediction on a training data set was selected, an SVM classifier was then trained on this combination, and tested for prediction accuracy on an independent data set. Prediction accuracy was quantified for the optimal features derived from each object.</p><p><strong>Results: </strong>The best feature combination based on 5 CT-based features derived from the left ventricle had the highest testing prediction accuracy of 0.88 among all objects. Prediction accuracies over all objects ranged from 0.76-0.88. Heart, Left Atrium, Aortic Arch, Thoracic Aorta, and Descending Thoracic Aorta showed the next best accuracy of 0.84. Most optimal features were texture properties based on the co-occurrence matrix.</p><p><strong>Conclusion: </strong>It is feasible to predict future cardiotoxicity following RT with high accuracy in individual patients with thoracic malignancy from available pre-treatment CT images via machine learning techniques.</p>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.acra.2025.01.012","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Rationale and objectives: Cardiovascular toxicity is a well-known complication of thoracic radiation therapy (RT), leading to increased morbidity and mortality, but existing techniques to predict cardiovascular toxicity have limitations. Predictive biomarkers of cardiovascular toxicity may help to maximize patient outcomes.

Methods: The machine learning optimal biomarker (OBM) method was employed to predict development of cardiotoxicity (based on serial echocardiographic measurements of left ventricular ejection fraction and longitudinal strain) from computed tomography (CT) images in patients with thoracic malignancy undergoing RT. Manual segmentations of 10 cardiovascular objects of interest were performed on pre-treatment non-contrast-enhanced CT simulation images in 125 patients with thoracic malignancy (41 who developed cardiotoxicity and 84 who did not after RT). 1078 features describing morphology, image intensity, and texture for each of these objects were extracted and the top 5 features among them that were most uncorrelated and showed the best ability to discriminate between cardiotoxicity/ no cardiotoxicity were determined. The best combination among all possible combinations among these 5 features that yielded the highest accuracy of prediction on a training data set was selected, an SVM classifier was then trained on this combination, and tested for prediction accuracy on an independent data set. Prediction accuracy was quantified for the optimal features derived from each object.

Results: The best feature combination based on 5 CT-based features derived from the left ventricle had the highest testing prediction accuracy of 0.88 among all objects. Prediction accuracies over all objects ranged from 0.76-0.88. Heart, Left Atrium, Aortic Arch, Thoracic Aorta, and Descending Thoracic Aorta showed the next best accuracy of 0.84. Most optimal features were texture properties based on the co-occurrence matrix.

Conclusion: It is feasible to predict future cardiotoxicity following RT with high accuracy in individual patients with thoracic malignancy from available pre-treatment CT images via machine learning techniques.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过优化生物标志物方法从胸腔恶性肿瘤患者治疗前的 CT 图像预测放疗诱发的心血管毒性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Academic Radiology
Academic Radiology 医学-核医学
CiteScore
7.60
自引率
10.40%
发文量
432
审稿时长
18 days
期刊介绍: Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.
期刊最新文献
Machine Learning Model for Risk Stratification of Papillary Thyroid Carcinoma Based on Radiopathomics. Non-invasive Assessment of Human Epidermal Growth Factor Receptor 2 Expression in Gastric Cancer Based on Deep Learning: A Computed Tomography-based Multicenter Study. Prediction of Radiation Therapy Induced Cardiovascular Toxicity from Pretreatment CT Images in Patients with Thoracic Malignancy via an Optimal Biomarker Approach. Unlocking Innovation: Promoting Scholarly Endeavors During Radiology Residency. Longitudinal Assessment of Pulmonary Involvement and Prognosis in Different Subtypes of COVID-19 Patients After One Year Using Low-Dose CT: A Prospective Observational Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1