The modulation of low molecular weight sulfur compounds levels in visceral adipose tissue of TLR2-deficient mice on a high-fat diet.

Patrycja Bronowicka-Adamska, Dominika Szlęzak, Anna Bentke-Imiolek, Kinga Kaszuba, Monika Majewska-Szczepanik
{"title":"The modulation of low molecular weight sulfur compounds levels in visceral adipose tissue of TLR2-deficient mice on a high-fat diet.","authors":"Patrycja Bronowicka-Adamska, Dominika Szlęzak, Anna Bentke-Imiolek, Kinga Kaszuba, Monika Majewska-Szczepanik","doi":"10.1016/j.biochi.2025.01.008","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity treatment requires an individualized approach, emphasizing the need to identify metabolic pathways of diagnostic relevance. Toll-like receptors (TLRs), particularly TLR2 and TLR4, play a crucial role in metabolic disorders, as receptor deficiencies improves insulin sensitivity and reduces obesity-related inflammation. Additionally, hydrogen sulfide (H<sub>2</sub>S) influences lipolysis, adipogenesis, and adipose tissue browning through persulfidation. This study investigates the impact of a high-fat diet (HFD) on low molecular weight sulfur compounds in the visceral adipose tissue (VAT) of C57BL/6 and TLR2-deficient mice. It focuses on key enzymes involved in H<sub>2</sub>S metabolism: cystathionine beta-synthase (CBS), cystathionine gamma-lyase (CGL), 3-mercaptopyruvate sulfurtransferase (MPST), and thiosulfate sulfurtransferase (TST). In C57BL/6 mice on HFD, MPST activity decreased, while CBS level increased, potentially compensating for H<sub>2</sub>S production. In contrast, TLR2-deficient mice on HFD exhibited higher MPST activity but reduced level of CBS and CGL activity, suggesting that TLR2 deficiency mitigates HFD-induced changes in sulfur metabolism. TST activity was lower in TLR2-deficient mice, indicating an independent regulatory role of TLR2 in TST activity. Elevated oxidative stress, reflected by increased glutathione levels, was observed in wild-type mice. Interestingly, cysteine and cystine were detectable only in the VAT of the C57BL/6 ND group and were absent in all other groups. The capacity for hydrogen sulfide production in tissues from TLR2-/-B6 HFD group was significantly lower than in the C57BL/6 HFD group. In conclusion, TLR2 modulates sulfur metabolism, oxidative stress, and inflammation in obesity. TLR2 deficiency disrupts H<sub>2</sub>S production and redox balance, potentially contributing to metabolic dysfunction, highlighting TLR2 as a potential therapeutic target for obesity-related metabolic disorders.</p>","PeriodicalId":93898,"journal":{"name":"Biochimie","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.biochi.2025.01.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Obesity treatment requires an individualized approach, emphasizing the need to identify metabolic pathways of diagnostic relevance. Toll-like receptors (TLRs), particularly TLR2 and TLR4, play a crucial role in metabolic disorders, as receptor deficiencies improves insulin sensitivity and reduces obesity-related inflammation. Additionally, hydrogen sulfide (H2S) influences lipolysis, adipogenesis, and adipose tissue browning through persulfidation. This study investigates the impact of a high-fat diet (HFD) on low molecular weight sulfur compounds in the visceral adipose tissue (VAT) of C57BL/6 and TLR2-deficient mice. It focuses on key enzymes involved in H2S metabolism: cystathionine beta-synthase (CBS), cystathionine gamma-lyase (CGL), 3-mercaptopyruvate sulfurtransferase (MPST), and thiosulfate sulfurtransferase (TST). In C57BL/6 mice on HFD, MPST activity decreased, while CBS level increased, potentially compensating for H2S production. In contrast, TLR2-deficient mice on HFD exhibited higher MPST activity but reduced level of CBS and CGL activity, suggesting that TLR2 deficiency mitigates HFD-induced changes in sulfur metabolism. TST activity was lower in TLR2-deficient mice, indicating an independent regulatory role of TLR2 in TST activity. Elevated oxidative stress, reflected by increased glutathione levels, was observed in wild-type mice. Interestingly, cysteine and cystine were detectable only in the VAT of the C57BL/6 ND group and were absent in all other groups. The capacity for hydrogen sulfide production in tissues from TLR2-/-B6 HFD group was significantly lower than in the C57BL/6 HFD group. In conclusion, TLR2 modulates sulfur metabolism, oxidative stress, and inflammation in obesity. TLR2 deficiency disrupts H2S production and redox balance, potentially contributing to metabolic dysfunction, highlighting TLR2 as a potential therapeutic target for obesity-related metabolic disorders.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cloning, Expression, Characterization and in silico studies of L-asparaginase from Vibrio sp. (GBPx3). Metformin's Anticancer Odyssey: Revealing Multifaceted Mechanisms Across Diverse Neoplastic Terrains- A Critical Review. Over-expression of AeWRKY2 promotes oleanolic acid and hederagenin accumulation in Aralia elata. The characterization and comparison of femoral bone-derived skeletal stem cells. Doxorubicin-induced senescence is modulated by the eukaryotic release factor 3a and its polyglycine expansion in HCT116 cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1