Relationship between structural properties and biological activity of (-)-menthol and some menthyl esters

IF 2.6 4区 生物学 Q2 BIOLOGY Computational Biology and Chemistry Pub Date : 2025-01-18 DOI:10.1016/j.compbiolchem.2025.108357
Dilshod A. Mansurov , Alisher Kh. Khaitbaev , Khamid Kh. Khaitbaev , Khamza S. Toshov , Enrico Benassi
{"title":"Relationship between structural properties and biological activity of (-)-menthol and some menthyl esters","authors":"Dilshod A. Mansurov ,&nbsp;Alisher Kh. Khaitbaev ,&nbsp;Khamid Kh. Khaitbaev ,&nbsp;Khamza S. Toshov ,&nbsp;Enrico Benassi","doi":"10.1016/j.compbiolchem.2025.108357","DOIUrl":null,"url":null,"abstract":"<div><div>Menthol is a naturally occurring cyclic terpene alcohol and is the major component of peppermint and corn mint essential oils extracted from <em>Mentha piperita L.</em> and <em>Mentha arvensis L.</em>. Menthol and its derivatives are widely used in pharmaceutical, cosmetic and food industries. Among its eight isomers, (-)-menthol is the most effective one in terms of refreshing effect. While the invigorating property of (-)-menthol is generally known, this claim is based on a substantial amount of literature and experience. (-)-Menthol has consistently been reported to possess better cooling and refreshing qualities in comparison to its isomers, making it the preferred choice in a broad range of applications such as personal care products, pharmaceuticals and food additives. Additionally, the (-)-menthol molecular structure allows it to have a tighter fitting with the thermoreceptors in the skin and mucous membranes, and thus to provide a more intense cooling feeling. Thus, although others have similar properties to a degree, (-)-menthol is the best compared to all in its refreshing capacity. This study focuses on menthol and some of its esters, <em>viz.</em> menthyl acetate, propionate, butyrate, valerate and hexanoate, with the purpose of establish a connection between structural, electrostatic and electronic characteristics and biological effects. The mostly favoured interactions of the esters with biotargets were investigated at a molecular level, offering a plausible foundation for their bioactivity elucidation. This study is conducted at a quantum mechanical and molecular docking level. The results may be of possible usefulness in areas of applications, such as pharmacological research and drug.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"115 ","pages":"Article 108357"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927125000179","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Menthol is a naturally occurring cyclic terpene alcohol and is the major component of peppermint and corn mint essential oils extracted from Mentha piperita L. and Mentha arvensis L.. Menthol and its derivatives are widely used in pharmaceutical, cosmetic and food industries. Among its eight isomers, (-)-menthol is the most effective one in terms of refreshing effect. While the invigorating property of (-)-menthol is generally known, this claim is based on a substantial amount of literature and experience. (-)-Menthol has consistently been reported to possess better cooling and refreshing qualities in comparison to its isomers, making it the preferred choice in a broad range of applications such as personal care products, pharmaceuticals and food additives. Additionally, the (-)-menthol molecular structure allows it to have a tighter fitting with the thermoreceptors in the skin and mucous membranes, and thus to provide a more intense cooling feeling. Thus, although others have similar properties to a degree, (-)-menthol is the best compared to all in its refreshing capacity. This study focuses on menthol and some of its esters, viz. menthyl acetate, propionate, butyrate, valerate and hexanoate, with the purpose of establish a connection between structural, electrostatic and electronic characteristics and biological effects. The mostly favoured interactions of the esters with biotargets were investigated at a molecular level, offering a plausible foundation for their bioactivity elucidation. This study is conducted at a quantum mechanical and molecular docking level. The results may be of possible usefulness in areas of applications, such as pharmacological research and drug.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Biology and Chemistry
Computational Biology and Chemistry 生物-计算机:跨学科应用
CiteScore
6.10
自引率
3.20%
发文量
142
审稿时长
24 days
期刊介绍: Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered. Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered. Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.
期刊最新文献
Editorial Board The potential mechanisms by which Xiaoyao Powder may exert therapeutic effects on thyroid cancer were examined at various levels Genome-wide exploration: Evolution, structural characterization, molecular docking, molecular dynamics simulation and expression analysis of sugar transporter (ST) gene family in potato (Solanum tuberosum) Modulating Acinetobacter baumannii BfmR (RstA) drug target: Daniellia oliveri compounds as RstA quorum sensing inhibitors Nalidixic acid inhibits the aggregation of HSA: Utilizing the molecular simulations to uncover the detailed insights
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1