Zonal Characteristics of Collagen Ultrastructure and Responses to Mechanical Loading in Articular Cartilage

IF 9.4 1区 医学 Q1 ENGINEERING, BIOMEDICAL Acta Biomaterialia Pub Date : 2025-03-15 DOI:10.1016/j.actbio.2025.01.047
Jingrui Hu , Keke Zheng , Benjamin E. Sherlock , Jingxiao Zhong , Jessica Mansfield , Ellen Green , Andrew D. Toms , C. Peter Winlove , Junning Chen
{"title":"Zonal Characteristics of Collagen Ultrastructure and Responses to Mechanical Loading in Articular Cartilage","authors":"Jingrui Hu ,&nbsp;Keke Zheng ,&nbsp;Benjamin E. Sherlock ,&nbsp;Jingxiao Zhong ,&nbsp;Jessica Mansfield ,&nbsp;Ellen Green ,&nbsp;Andrew D. Toms ,&nbsp;C. Peter Winlove ,&nbsp;Junning Chen","doi":"10.1016/j.actbio.2025.01.047","DOIUrl":null,"url":null,"abstract":"<div><div>The biomechanical properties of articular cartilage arise from a complex bioenvironment comprising hierarchically organised collagen networks within the extracellular matrix (ECM) that interact with the proteoglycan-rich interstitial fluid. This network features a depth-dependent fibril organisation across different zones. Understanding how collagen fibrils respond to external loading is key to elucidating the mechanisms behind lesion formation and managing degenerative conditions like osteoarthritis. This study employs polarisation-resolved second harmonic generation (pSHG) microscopy to quantify the ultrastructural organisation of collagen fibrils and their spatial gradient along the depth of bone-cartilage explants under a close-to-<em>in vivo</em> condition. By combining with <em>in-situ</em> loading, we examined the responses of collagen fibrils by quantifying changes in their principal orientation and degree of alignment. The spatial gradient and heterogeneity of collagen organisation were captured at high resolution (1 μm) along the longitudinal plane of explants (0.5 mm by 2 mm). Zone-specific ultrastructural characteristics were quantified to aid in defining zonal borders, revealing consistent zonal proportions with varying overall thicknesses. Under compression, the transitional zone exhibited the most significant re-organisation of collagen fibrils. It initially allowed large deformation through the re-orientation of fibrils, which then tightened fibril alignment to prevent excessive deformation, indicating a dynamic adaptation mechanism in response to increasing strain levels. Our results provide comprehensive, zone-specific baselines of cartilage ultrastructure and micromechanics, crucial for investigating the onset and progression of degenerative conditions, setting therapeutic intervention targets, and guiding cartilage repair and regeneration efforts.</div></div><div><h3>Statement of significance</h3><div>Achieved unprecedented quantification of the spatial gradient and heterogeneity of collagen ultrastructural organisation at a high resolution (1 μm) along the full depth of the longitudinal plane of osteochondral explants (0.5 mm by 2 mm) under close-to-<em>in vivo</em> condition.</div><div>Suggested new anatomical landmarks based on ultrastructural features for determining zonal borders and found consistent zonal proportions in explants with different overall thicknesses.</div><div>Demonstrated that collagen fibrils initially respond by reorienting themselves at low strain levels, playing a significant role in cartilage deformation, particularly within the transitional zone. At higher strain levels, more collagen fibrils re-aligned, indicating a dynamic shift in the response mechanism at varying strain levels.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"195 ","pages":"Pages 104-116"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706125000637","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The biomechanical properties of articular cartilage arise from a complex bioenvironment comprising hierarchically organised collagen networks within the extracellular matrix (ECM) that interact with the proteoglycan-rich interstitial fluid. This network features a depth-dependent fibril organisation across different zones. Understanding how collagen fibrils respond to external loading is key to elucidating the mechanisms behind lesion formation and managing degenerative conditions like osteoarthritis. This study employs polarisation-resolved second harmonic generation (pSHG) microscopy to quantify the ultrastructural organisation of collagen fibrils and their spatial gradient along the depth of bone-cartilage explants under a close-to-in vivo condition. By combining with in-situ loading, we examined the responses of collagen fibrils by quantifying changes in their principal orientation and degree of alignment. The spatial gradient and heterogeneity of collagen organisation were captured at high resolution (1 μm) along the longitudinal plane of explants (0.5 mm by 2 mm). Zone-specific ultrastructural characteristics were quantified to aid in defining zonal borders, revealing consistent zonal proportions with varying overall thicknesses. Under compression, the transitional zone exhibited the most significant re-organisation of collagen fibrils. It initially allowed large deformation through the re-orientation of fibrils, which then tightened fibril alignment to prevent excessive deformation, indicating a dynamic adaptation mechanism in response to increasing strain levels. Our results provide comprehensive, zone-specific baselines of cartilage ultrastructure and micromechanics, crucial for investigating the onset and progression of degenerative conditions, setting therapeutic intervention targets, and guiding cartilage repair and regeneration efforts.

Statement of significance

Achieved unprecedented quantification of the spatial gradient and heterogeneity of collagen ultrastructural organisation at a high resolution (1 μm) along the full depth of the longitudinal plane of osteochondral explants (0.5 mm by 2 mm) under close-to-in vivo condition.
Suggested new anatomical landmarks based on ultrastructural features for determining zonal borders and found consistent zonal proportions in explants with different overall thicknesses.
Demonstrated that collagen fibrils initially respond by reorienting themselves at low strain levels, playing a significant role in cartilage deformation, particularly within the transitional zone. At higher strain levels, more collagen fibrils re-aligned, indicating a dynamic shift in the response mechanism at varying strain levels.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Biomaterialia
Acta Biomaterialia 工程技术-材料科学:生物材料
CiteScore
16.80
自引率
3.10%
发文量
776
审稿时长
30 days
期刊介绍: Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.
期刊最新文献
Editorial Board Machine learning identifies remodeling patterns in human lung extracellular matrix Preparation and Application of Nature-inspired High-performance Mechanical Materials Electrospun meshes for abdominal wall hernia repair: Potential and challenges Zonal Characteristics of Collagen Ultrastructure and Responses to Mechanical Loading in Articular Cartilage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1