Anisotropic hydrogel microelectrodes for intraspinal neural recordings in vivo

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2025-01-28 DOI:10.1038/s41467-025-56450-4
Sizhe Huang, Ruobai Xiao, Shaoting Lin, Zuer Wu, Chen Lin, Geunho Jang, Eunji Hong, Shovit Gupta, Fake Lu, Bo Chen, Xinyue Liu, Atharva Sahasrabudhe, Zicong Zhang, Zhigang He, Alfred J. Crosby, Kaushal Sumaria, Tingyi Liu, Qianbin Wang, Siyuan Rao
{"title":"Anisotropic hydrogel microelectrodes for intraspinal neural recordings in vivo","authors":"Sizhe Huang, Ruobai Xiao, Shaoting Lin, Zuer Wu, Chen Lin, Geunho Jang, Eunji Hong, Shovit Gupta, Fake Lu, Bo Chen, Xinyue Liu, Atharva Sahasrabudhe, Zicong Zhang, Zhigang He, Alfred J. Crosby, Kaushal Sumaria, Tingyi Liu, Qianbin Wang, Siyuan Rao","doi":"10.1038/s41467-025-56450-4","DOIUrl":null,"url":null,"abstract":"<p>Creating durable, motion-compliant neural interfaces is crucial for accessing dynamic tissues under in vivo conditions and linking neural activity with behaviors. Utilizing the self-alignment of nano-fillers in a polymeric matrix under repetitive tension, here, we introduce conductive carbon nanotubes with high aspect ratios into semi-crystalline polyvinyl alcohol hydrogels, and create electrically anisotropic percolation pathways through cyclic stretching. The resulting anisotropic hydrogel fibers (diameter of 187 ± 13 µm) exhibit fatigue resistance (up to 20,000 cycles at 20% strain) with a stretchability of 64.5 ± 7.9% and low electrochemical impedance (33.20 ± 9.27 kΩ @ 1 kHz in 1 cm length). We observe the reconstructed nanofillers’ axial alignment and a corresponding anisotropic impedance decrease along the direction of cyclic stretching. We fabricate fiber-shaped hydrogels into bioelectronic devices and implant them into wild-type and transgenic <i>Thy1::ChR2-EYFP</i> mice to record electromyographic signals from muscles in anesthetized and freely moving conditions. These hydrogel fibers effectively enable the simultaneous recording of electrical signals from ventral spinal cord neurons and the tibialis anterior muscles during optogenetic stimulation. Importantly, the devices maintain functionality in intraspinal electrophysiology recordings over eight months after implantation, demonstrating their durability and potential for long-term monitoring in neurophysiological studies.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"23 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56450-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Creating durable, motion-compliant neural interfaces is crucial for accessing dynamic tissues under in vivo conditions and linking neural activity with behaviors. Utilizing the self-alignment of nano-fillers in a polymeric matrix under repetitive tension, here, we introduce conductive carbon nanotubes with high aspect ratios into semi-crystalline polyvinyl alcohol hydrogels, and create electrically anisotropic percolation pathways through cyclic stretching. The resulting anisotropic hydrogel fibers (diameter of 187 ± 13 µm) exhibit fatigue resistance (up to 20,000 cycles at 20% strain) with a stretchability of 64.5 ± 7.9% and low electrochemical impedance (33.20 ± 9.27 kΩ @ 1 kHz in 1 cm length). We observe the reconstructed nanofillers’ axial alignment and a corresponding anisotropic impedance decrease along the direction of cyclic stretching. We fabricate fiber-shaped hydrogels into bioelectronic devices and implant them into wild-type and transgenic Thy1::ChR2-EYFP mice to record electromyographic signals from muscles in anesthetized and freely moving conditions. These hydrogel fibers effectively enable the simultaneous recording of electrical signals from ventral spinal cord neurons and the tibialis anterior muscles during optogenetic stimulation. Importantly, the devices maintain functionality in intraspinal electrophysiology recordings over eight months after implantation, demonstrating their durability and potential for long-term monitoring in neurophysiological studies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
体内棘内神经记录的各向异性水凝胶微电极
创建持久的、运动兼容的神经接口对于在体内条件下访问动态组织和将神经活动与行为联系起来至关重要。利用聚合物基体中纳米填料在重复张力下的自取向,我们将高纵横比的导电碳纳米管引入半结晶聚乙烯醇水凝胶中,并通过循环拉伸创造了电各向异性的渗透途径。得到的各向异性水凝胶纤维(直径为187±13µm)具有抗疲劳性能(在20%应变下可达20,000次循环),拉伸率为64.5±7.9%,电化学阻抗低(33.20±9.27 kΩ @ 1 kHz, 1 cm长度)。我们观察到重建的纳米填料的轴向排列和相应的各向异性阻抗沿循环拉伸方向减小。我们将纤维形状的水凝胶制成生物电子器件,并将其植入野生型和转基因Thy1::ChR2-EYFP小鼠体内,记录麻醉和自由运动条件下肌肉的肌电信号。这些水凝胶纤维能有效地同时记录光遗传刺激下脊髓前腹神经元和胫骨前肌的电信号。重要的是,该装置在植入后8个月仍能保持椎管内电生理记录的功能,这证明了它们在神经生理学研究中的耐久性和长期监测潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
dHyperCas12a enables multiplexed CRISPRi screens Kilowatt-scale alkali-cation-free CO2 electrolysis via accelerating mass transfer A missense variant in ASCL5 leads to lobodontia. An Antarctic ecosystem value index to quantify ecological value across trophic levels and over time Artificial gauge fields and dimensions in a polariton hofstadter ladder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1