Assessing groundwater artificial recharge suitability in the Mi River basin using GIS, RS, and FAHP: a comprehensive analysis with seasonal variations

IF 5.7 3区 环境科学与生态学 Q1 WATER RESOURCES Applied Water Science Pub Date : 2025-01-29 DOI:10.1007/s13201-025-02362-z
Qianyu Song, Yuyu Liu, Zhongpeng Wang, Zhenghe Xu
{"title":"Assessing groundwater artificial recharge suitability in the Mi River basin using GIS, RS, and FAHP: a comprehensive analysis with seasonal variations","authors":"Qianyu Song,&nbsp;Yuyu Liu,&nbsp;Zhongpeng Wang,&nbsp;Zhenghe Xu","doi":"10.1007/s13201-025-02362-z","DOIUrl":null,"url":null,"abstract":"<div><p>The escalating depletion and irrational exploitation of global groundwater resources have led to severe ecological and environmental repercussions and exacerbated water scarcity. Therefore, effective, sustainable management remains urgent to ensure the security and balance of water resources. This study utilized an integrated approach that combines Geographic information systems (GIS), remote sensing, and the fuzzy analytic hierarchy process to assess the suitability of artificial recharge in the Mi River watershed, creating 14 thematic layers. FAHP is a crucial tool for assigning relative weights to these layers, enabling a comprehensive assessment of the suitability of artificial recharge. The study area was categorized into five suitability classes with notable seasonal variations. During the wet season, the areas were rated as follows: 5.80%, very good; 35.24%, good; 41.96%, moderate; 16.11%, poor; 0.89%, very poor. These percentages during the dry season changed to 11.02% (very good), 39.80% (good), 34.39% (moderate), 10.39% (poor), and 4.39% (very poor). The central basin regions were deemed less suitable for artificial recharge. The model's accuracy was validated by analyzing receiver operating characteristic curves derived from a dataset of 29 wells. This study provides a scientific foundation for sustainable groundwater management within the Mi River watershed and substantiates the effectiveness of GIS and FAHP in evaluating artificial recharge potential. Future research should improve data accuracy to increase model precision and extend its applicability to various geographical and environmental settings.</p></div>","PeriodicalId":8374,"journal":{"name":"Applied Water Science","volume":"15 2","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13201-025-02362-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Water Science","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13201-025-02362-z","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

The escalating depletion and irrational exploitation of global groundwater resources have led to severe ecological and environmental repercussions and exacerbated water scarcity. Therefore, effective, sustainable management remains urgent to ensure the security and balance of water resources. This study utilized an integrated approach that combines Geographic information systems (GIS), remote sensing, and the fuzzy analytic hierarchy process to assess the suitability of artificial recharge in the Mi River watershed, creating 14 thematic layers. FAHP is a crucial tool for assigning relative weights to these layers, enabling a comprehensive assessment of the suitability of artificial recharge. The study area was categorized into five suitability classes with notable seasonal variations. During the wet season, the areas were rated as follows: 5.80%, very good; 35.24%, good; 41.96%, moderate; 16.11%, poor; 0.89%, very poor. These percentages during the dry season changed to 11.02% (very good), 39.80% (good), 34.39% (moderate), 10.39% (poor), and 4.39% (very poor). The central basin regions were deemed less suitable for artificial recharge. The model's accuracy was validated by analyzing receiver operating characteristic curves derived from a dataset of 29 wells. This study provides a scientific foundation for sustainable groundwater management within the Mi River watershed and substantiates the effectiveness of GIS and FAHP in evaluating artificial recharge potential. Future research should improve data accuracy to increase model precision and extend its applicability to various geographical and environmental settings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Water Science
Applied Water Science WATER RESOURCES-
CiteScore
9.90
自引率
3.60%
发文量
268
审稿时长
13 weeks
期刊介绍:
期刊最新文献
Investigation of the impact of seawater intrusion on the agricultural land quality along river margins Preparation of Ag@Ag2O/AgCl composite photocatalytic material and degradation performance for SD I under sunlight Nanofluid magnetoconvection and entropy generation: a computational study for water treatment and resource management Comparative analysis of groundwater potential assessment in Dharmapuri District, Tamil Nadu, India Separation of phycocyanin from Arthrospira platensis (spirulina) by application of ceramic microfiltration membranes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1